Spaces:
Sleeping
Sleeping
[email protected]
commited on
Merge pull request #15 from Sunwood-ai-labs/translate-readme-11587644676
Browse files- docs/README.en.md +23 -18
docs/README.en.md
CHANGED
@@ -44,10 +44,10 @@ license: mit
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
-
**Llama-finetune-sandbox** provides an experimental environment for learning and validating Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers.
|
48 |
|
49 |
|
50 |
-
## ✨
|
51 |
|
52 |
1. **Diverse Fine-tuning Methods**:
|
53 |
- LoRA (Low-Rank Adaptation)
|
@@ -58,37 +58,43 @@ license: mit
|
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
-
3. **Experiment Environment
|
62 |
- Performance evaluation tools (added in v0.3.0, later removed)
|
63 |
-
-
|
64 |
-
-
|
65 |
-
|
66 |
|
67 |
## 📚 Examples
|
68 |
|
69 |
This repository includes the following examples:
|
70 |
|
71 |
-
###
|
72 |
-
- Implementation of
|
73 |
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details. (Japanese)
|
74 |
-
- → Use [this
|
75 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
76 |
|
77 |
### Efficient Model Deployment using Ollama and LiteLLM
|
78 |
-
- Setup and deployment guide
|
79 |
- → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
80 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
81 |
|
82 |
### LLM Evaluation System (LLMs as a Judge)
|
83 |
- Implementation of a system for automatically evaluating the quality of LLM responses (added in v0.3.0, later removed).
|
84 |
- Uses LLMs as evaluators to assess the responses of other LLMs (LLMs as a Judge method).
|
85 |
-
- Quantitative quality assessment and feedback generation using a 4-
|
86 |
- → See [`llm-evaluator-notebook.md`](sandbox/llm-evaluator-notebook.md) for details.
|
87 |
- Efficient evaluation system using Gemini and LiteLLM.
|
88 |
- [📒Notebook here](https://colab.research.google.com/drive/1haO44IeseQ3OL92HlsINAgBI_yA1fxcJ?usp=sharing)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
##
|
92 |
|
93 |
1. Clone the repository:
|
94 |
```bash
|
@@ -99,7 +105,7 @@ cd Llama-finetune-sandbox
|
|
99 |
## 📝 Adding Examples
|
100 |
|
101 |
1. Add new implementations to the `examples/` directory.
|
102 |
-
2. Add necessary
|
103 |
3. Update documentation and tests.
|
104 |
4. Create a pull request.
|
105 |
|
@@ -108,15 +114,14 @@ cd Llama-finetune-sandbox
|
|
108 |
- Implementation of new fine-tuning methods.
|
109 |
- Bug fixes and feature improvements.
|
110 |
- Documentation improvements.
|
111 |
-
-
|
112 |
|
113 |
## 📚 References
|
114 |
|
115 |
- [HuggingFace PEFT Documentation](https://huggingface.co/docs/peft)
|
116 |
-
- [About Llama
|
117 |
-
- [Fine-tuning
|
118 |
|
119 |
## 📄 License
|
120 |
|
121 |
-
This project is licensed under the MIT License.
|
122 |
-
```
|
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
+
**Llama-finetune-sandbox** provides an experimental environment for learning and validating Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.3.0 included improved documentation and an updated English README.
|
48 |
|
49 |
|
50 |
+
## ✨ Key Features
|
51 |
|
52 |
1. **Diverse Fine-tuning Methods**:
|
53 |
- LoRA (Low-Rank Adaptation)
|
|
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
+
3. **Experiment Environment**:
|
62 |
- Performance evaluation tools (added in v0.3.0, later removed)
|
63 |
+
- Optimized memory usage
|
64 |
+
- Visualization of experimental results
|
|
|
65 |
|
66 |
## 📚 Examples
|
67 |
|
68 |
This repository includes the following examples:
|
69 |
|
70 |
+
### Fast Fine-tuning using Unsloth
|
71 |
+
- Implementation of fast fine-tuning for Llama-3.2-1B/3B models.
|
72 |
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details. (Japanese)
|
73 |
+
- → Use [this](https://huggingface.co/spaces/MakiAi/JupytextWebUI) to convert from markdown to notebook format.
|
74 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
75 |
|
76 |
### Efficient Model Deployment using Ollama and LiteLLM
|
77 |
+
- Setup and deployment guide on Google Colab.
|
78 |
- → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
79 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
80 |
|
81 |
### LLM Evaluation System (LLMs as a Judge)
|
82 |
- Implementation of a system for automatically evaluating the quality of LLM responses (added in v0.3.0, later removed).
|
83 |
- Uses LLMs as evaluators to assess the responses of other LLMs (LLMs as a Judge method).
|
84 |
+
- Quantitative quality assessment and feedback generation using a 4-level rating scale.
|
85 |
- → See [`llm-evaluator-notebook.md`](sandbox/llm-evaluator-notebook.md) for details.
|
86 |
- Efficient evaluation system using Gemini and LiteLLM.
|
87 |
- [📒Notebook here](https://colab.research.google.com/drive/1haO44IeseQ3OL92HlsINAgBI_yA1fxcJ?usp=sharing)
|
88 |
|
89 |
+
### Wikipedia Data-based Q&A Dataset Generation (Sentence Pool QA Method)
|
90 |
+
- Generation of high-quality Q&A datasets using the sentence pool QA method.
|
91 |
+
- → A new dataset creation method that generates Q&A pairs while preserving context by pooling sentences separated by periods.
|
92 |
+
- → Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with optimal context ranges for different purposes.
|
93 |
+
- → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
94 |
+
- [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
95 |
+
|
96 |
|
97 |
+
## 🛠️ Setup
|
98 |
|
99 |
1. Clone the repository:
|
100 |
```bash
|
|
|
105 |
## 📝 Adding Examples
|
106 |
|
107 |
1. Add new implementations to the `examples/` directory.
|
108 |
+
2. Add necessary settings and utilities to `utils/`.
|
109 |
3. Update documentation and tests.
|
110 |
4. Create a pull request.
|
111 |
|
|
|
114 |
- Implementation of new fine-tuning methods.
|
115 |
- Bug fixes and feature improvements.
|
116 |
- Documentation improvements.
|
117 |
+
- Addition of usage examples.
|
118 |
|
119 |
## 📚 References
|
120 |
|
121 |
- [HuggingFace PEFT Documentation](https://huggingface.co/docs/peft)
|
122 |
+
- [About Llama Models](https://github.com/facebookresearch/llama)
|
123 |
+
- [Fine-tuning Best Practices](https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox/wiki)
|
124 |
|
125 |
## 📄 License
|
126 |
|
127 |
+
This project is licensed under the MIT License.
|
|