Spaces:
Running
Running
Update app.py
Browse filesmajority with steps 1
app.py
CHANGED
@@ -2,10 +2,11 @@ import gradio as gr
|
|
2 |
import ctranslate2
|
3 |
from transformers import AutoTokenizer
|
4 |
from huggingface_hub import snapshot_download
|
5 |
-
from codeexecutor import
|
|
|
6 |
|
7 |
# Define the model and tokenizer loading
|
8 |
-
model_prompt = "
|
9 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
10 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
11 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
@@ -15,31 +16,59 @@ iterations = 10
|
|
15 |
def get_prediction(question):
|
16 |
input_text = model_prompt + question
|
17 |
input_tokens = tokenizer.tokenize(input_text)
|
18 |
-
results = generator.generate_batch(
|
|
|
|
|
|
|
|
|
|
|
19 |
output_tokens = results[0].sequences[0]
|
20 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
21 |
return predicted_answer
|
22 |
|
23 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def majority_vote_with_steps(question, num_iterations=10):
|
25 |
all_predictions = []
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
for _ in range(num_iterations):
|
30 |
prediction = get_prediction(question)
|
31 |
-
|
32 |
-
answer, success = postprocess_completion(prediction, True, True)
|
33 |
all_predictions.append(prediction)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
majority_voted_ans = get_majority_vote(
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
return majority_voted_ans, steps_solution
|
44 |
|
45 |
# Gradio interface for user input and output
|
@@ -52,7 +81,7 @@ def gradio_interface(question, correct_answer):
|
|
52 |
"Correct Solution": correct_answer
|
53 |
}
|
54 |
|
55 |
-
# Custom CSS for enhanced design
|
56 |
custom_css = """
|
57 |
body {
|
58 |
background-color: #fafafa;
|
@@ -94,7 +123,7 @@ custom_css = """
|
|
94 |
#math_question, #correct_answer {
|
95 |
font-size: 20px;
|
96 |
font-family: 'Poppins', sans-serif;
|
97 |
-
font-weight: 500px;
|
98 |
color: #007acc;
|
99 |
margin-bottom: 5px;
|
100 |
display: inline-block;
|
|
|
2 |
import ctranslate2
|
3 |
from transformers import AutoTokenizer
|
4 |
from huggingface_hub import snapshot_download
|
5 |
+
from codeexecutor import get_majority_vote
|
6 |
+
import re
|
7 |
|
8 |
# Define the model and tokenizer loading
|
9 |
+
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
|
10 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
11 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
12 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
|
|
16 |
def get_prediction(question):
|
17 |
input_text = model_prompt + question
|
18 |
input_tokens = tokenizer.tokenize(input_text)
|
19 |
+
results = generator.generate_batch(
|
20 |
+
[input_tokens],
|
21 |
+
max_length=512,
|
22 |
+
sampling_temperature=0.7,
|
23 |
+
sampling_topk=40,
|
24 |
+
)
|
25 |
output_tokens = results[0].sequences[0]
|
26 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
27 |
return predicted_answer
|
28 |
|
29 |
+
# Function to parse the prediction to extract the answer and steps
|
30 |
+
def parse_prediction(prediction):
|
31 |
+
lines = prediction.strip().split('\n')
|
32 |
+
answer = None
|
33 |
+
steps = []
|
34 |
+
for line in lines:
|
35 |
+
# Check for "Answer:" or "answer:"
|
36 |
+
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
|
37 |
+
if match:
|
38 |
+
answer = match.group(1).strip()
|
39 |
+
else:
|
40 |
+
steps.append(line)
|
41 |
+
if answer is None:
|
42 |
+
# If no "Answer:" found, assume last line is the answer
|
43 |
+
answer = lines[-1].strip()
|
44 |
+
steps = lines[:-1]
|
45 |
+
steps_text = '\n'.join(steps).strip()
|
46 |
+
return answer, steps_text
|
47 |
+
|
48 |
+
# Function to perform majority voting and get steps
|
49 |
def majority_vote_with_steps(question, num_iterations=10):
|
50 |
all_predictions = []
|
51 |
+
all_answers = []
|
52 |
+
steps_list = []
|
53 |
+
|
54 |
for _ in range(num_iterations):
|
55 |
prediction = get_prediction(question)
|
56 |
+
answer, steps = parse_prediction(prediction)
|
|
|
57 |
all_predictions.append(prediction)
|
58 |
+
all_answers.append(answer)
|
59 |
+
steps_list.append(steps)
|
60 |
+
|
61 |
+
# Get the majority voted answer
|
62 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
63 |
+
|
64 |
+
# Find the steps corresponding to the majority voted answer
|
65 |
+
for i, ans in enumerate(all_answers):
|
66 |
+
if ans == majority_voted_ans:
|
67 |
+
steps_solution = steps_list[i]
|
68 |
+
break
|
69 |
+
else:
|
70 |
+
steps_solution = "No steps found"
|
71 |
+
|
72 |
return majority_voted_ans, steps_solution
|
73 |
|
74 |
# Gradio interface for user input and output
|
|
|
81 |
"Correct Solution": correct_answer
|
82 |
}
|
83 |
|
84 |
+
# Custom CSS for enhanced design (unchanged)
|
85 |
custom_css = """
|
86 |
body {
|
87 |
background-color: #fafafa;
|
|
|
123 |
#math_question, #correct_answer {
|
124 |
font-size: 20px;
|
125 |
font-family: 'Poppins', sans-serif;
|
126 |
+
font-weight: 500px;
|
127 |
color: #007acc;
|
128 |
margin-bottom: 5px;
|
129 |
display: inline-block;
|