Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import ctranslate2
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from huggingface_hub import snapshot_download
|
5 |
-
from codeexecutor import postprocess_completion,
|
6 |
|
7 |
# Define the model and tokenizer loading
|
8 |
model_prompt = "Solve the following mathematical problem: "
|
9 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
10 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
11 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
12 |
-
iterations
|
13 |
|
14 |
# Function to generate predictions using the model
|
15 |
def get_prediction(question):
|
@@ -18,24 +18,24 @@ def get_prediction(question):
|
|
18 |
results = generator.generate_batch([input_tokens])
|
19 |
output_tokens = results[0].sequences[0]
|
20 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
21 |
-
return predicted_answer
|
22 |
|
23 |
# Function to perform majority voting across multiple predictions
|
24 |
def majority_vote(question, num_iterations=10):
|
25 |
all_predictions = []
|
26 |
-
all_answer
|
27 |
for _ in range(num_iterations):
|
28 |
prediction = get_prediction(question)
|
29 |
-
answer
|
30 |
all_predictions.append(prediction)
|
31 |
all_answer.append(answer)
|
32 |
majority_voted_pred = max(set(all_predictions), key=all_predictions.count)
|
33 |
-
majority_voted_ans
|
34 |
-
return majority_voted_pred, all_predictions,
|
35 |
|
36 |
# Gradio interface for user input and output
|
37 |
def gradio_interface(question, correct_answer):
|
38 |
-
final_prediction, all_predictions,
|
39 |
return {
|
40 |
"Question": question,
|
41 |
"Generated Answers (10 iterations)": all_predictions,
|
@@ -44,61 +44,19 @@ def gradio_interface(question, correct_answer):
|
|
44 |
"Majority answer": final_answer
|
45 |
}
|
46 |
|
47 |
-
# Custom CSS styling for a better look and feel
|
48 |
-
custom_css = """
|
49 |
-
body {
|
50 |
-
background-color: #f7f9fc;
|
51 |
-
font-family: 'Arial', sans-serif;
|
52 |
-
}
|
53 |
-
.gradio-container {
|
54 |
-
border-radius: 10px;
|
55 |
-
border: 1px solid #e0e0e0;
|
56 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
57 |
-
padding: 20px;
|
58 |
-
background-color: white;
|
59 |
-
}
|
60 |
-
h1, h2, p {
|
61 |
-
text-align: center;
|
62 |
-
color: #333;
|
63 |
-
}
|
64 |
-
input, textarea {
|
65 |
-
border-radius: 5px;
|
66 |
-
border: 1px solid #ccc;
|
67 |
-
padding: 10px;
|
68 |
-
}
|
69 |
-
.gr-button {
|
70 |
-
background-color: #4CAF50;
|
71 |
-
color: white;
|
72 |
-
border-radius: 5px;
|
73 |
-
padding: 10px 20px;
|
74 |
-
font-size: 16px;
|
75 |
-
}
|
76 |
-
.gr-button:hover {
|
77 |
-
background-color: #45a049;
|
78 |
-
}
|
79 |
-
.gr-output {
|
80 |
-
background-color: #f1f1f1;
|
81 |
-
border-radius: 5px;
|
82 |
-
padding: 20px;
|
83 |
-
font-size: 14px;
|
84 |
-
}
|
85 |
-
"""
|
86 |
-
|
87 |
# Gradio app setup
|
88 |
-
|
89 |
fn=gradio_interface,
|
90 |
inputs=[
|
91 |
-
gr.Textbox(label="Math Question"
|
92 |
-
gr.Textbox(label="Correct Answer"
|
93 |
],
|
94 |
outputs=[
|
95 |
-
gr.JSON(label="Results"
|
96 |
],
|
97 |
title="Math Question Solver",
|
98 |
description="Enter a math question to get the model prediction and see all generated answers.",
|
99 |
-
live=True,
|
100 |
-
css=custom_css, # Apply custom CSS
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import ctranslate2
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from codeexecutor import postprocess_completion,get_majority_vote
|
6 |
|
7 |
# Define the model and tokenizer loading
|
8 |
model_prompt = "Solve the following mathematical problem: "
|
9 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
10 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
11 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
12 |
+
iterations=10
|
13 |
|
14 |
# Function to generate predictions using the model
|
15 |
def get_prediction(question):
|
|
|
18 |
results = generator.generate_batch([input_tokens])
|
19 |
output_tokens = results[0].sequences[0]
|
20 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
21 |
+
return predicted_answer
|
22 |
|
23 |
# Function to perform majority voting across multiple predictions
|
24 |
def majority_vote(question, num_iterations=10):
|
25 |
all_predictions = []
|
26 |
+
all_answer=[]
|
27 |
for _ in range(num_iterations):
|
28 |
prediction = get_prediction(question)
|
29 |
+
answer=postprocess_completion(prediction,True,True)
|
30 |
all_predictions.append(prediction)
|
31 |
all_answer.append(answer)
|
32 |
majority_voted_pred = max(set(all_predictions), key=all_predictions.count)
|
33 |
+
majority_voted_ans=get_majority_vote(all_answer)
|
34 |
+
return majority_voted_pred, all_predictions,majority_voted_ans
|
35 |
|
36 |
# Gradio interface for user input and output
|
37 |
def gradio_interface(question, correct_answer):
|
38 |
+
final_prediction, all_predictions,final_answer = majority_vote(question, iterations)
|
39 |
return {
|
40 |
"Question": question,
|
41 |
"Generated Answers (10 iterations)": all_predictions,
|
|
|
44 |
"Majority answer": final_answer
|
45 |
}
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Gradio app setup
|
48 |
+
interface = gr.Interface(
|
49 |
fn=gradio_interface,
|
50 |
inputs=[
|
51 |
+
gr.Textbox(label="Math Question"),
|
52 |
+
gr.Textbox(label="Correct Answer"),
|
53 |
],
|
54 |
outputs=[
|
55 |
+
gr.JSON(label="Results"), # Display the results in a JSON format
|
56 |
],
|
57 |
title="Math Question Solver",
|
58 |
description="Enter a math question to get the model prediction and see all generated answers.",
|
|
|
|
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
+
interface.launch()
|