Spaces:
Build error
Build error
Update optimizer.py
Browse files- optimizer.py +119 -178
optimizer.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
"""
|
2 |
Ultra Supreme Optimizer - Main optimization engine for image analysis
|
3 |
-
VERSIÓN
|
4 |
"""
|
5 |
|
6 |
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
|
@@ -14,7 +14,7 @@ from typing import Tuple, Dict, Any, Optional
|
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
from PIL import Image
|
17 |
-
from
|
18 |
|
19 |
from analyzer import UltraSupremeAnalyzer
|
20 |
|
@@ -25,12 +25,12 @@ class UltraSupremeOptimizer:
|
|
25 |
"""Main optimizer class for ultra supreme image analysis"""
|
26 |
|
27 |
def __init__(self):
|
28 |
-
self.
|
|
|
29 |
self.analyzer = UltraSupremeAnalyzer()
|
30 |
self.usage_count = 0
|
31 |
self.device = self._get_device()
|
32 |
self.is_initialized = False
|
33 |
-
# NO inicializar modelo aquí - hacerlo lazy
|
34 |
|
35 |
@staticmethod
|
36 |
def _get_device() -> str:
|
@@ -43,31 +43,37 @@ class UltraSupremeOptimizer:
|
|
43 |
return "cpu"
|
44 |
|
45 |
def initialize_model(self) -> bool:
|
46 |
-
"""Initialize
|
47 |
if self.is_initialized:
|
48 |
return True
|
49 |
|
50 |
try:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
)
|
59 |
|
60 |
-
|
|
|
|
|
|
|
61 |
self.is_initialized = True
|
62 |
|
63 |
# Clean up memory after initialization
|
64 |
gc.collect()
|
65 |
|
66 |
-
logger.info("
|
67 |
return True
|
68 |
|
69 |
except Exception as e:
|
70 |
-
logger.error(f"
|
71 |
return False
|
72 |
|
73 |
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
@@ -86,8 +92,8 @@ class UltraSupremeOptimizer:
|
|
86 |
if image.mode != 'RGB':
|
87 |
image = image.convert('RGB')
|
88 |
|
89 |
-
#
|
90 |
-
max_size =
|
91 |
if image.size[0] > max_size or image.size[1] > max_size:
|
92 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
93 |
|
@@ -98,7 +104,7 @@ class UltraSupremeOptimizer:
|
|
98 |
return None
|
99 |
|
100 |
def apply_flux_rules(self, base_prompt: str) -> str:
|
101 |
-
"""Aplica las reglas de Flux a un prompt base
|
102 |
|
103 |
# Limpiar el prompt de elementos no deseados
|
104 |
cleanup_patterns = [
|
@@ -148,110 +154,88 @@ class UltraSupremeOptimizer:
|
|
148 |
|
149 |
return final_prompt
|
150 |
|
151 |
-
def _prepare_models_for_gpu(self):
|
152 |
-
"""Prepara los modelos para GPU con la precisión correcta"""
|
153 |
-
try:
|
154 |
-
if hasattr(self.interrogator, 'caption_model'):
|
155 |
-
self.interrogator.caption_model = self.interrogator.caption_model.half().to("cuda")
|
156 |
-
|
157 |
-
if hasattr(self.interrogator, 'clip_model'):
|
158 |
-
self.interrogator.clip_model = self.interrogator.clip_model.half().to("cuda")
|
159 |
-
|
160 |
-
if hasattr(self.interrogator, 'blip_model'):
|
161 |
-
self.interrogator.blip_model = self.interrogator.blip_model.half().to("cuda")
|
162 |
-
|
163 |
-
self.interrogator.config.device = "cuda"
|
164 |
-
logger.info("Models prepared for GPU with FP16")
|
165 |
-
|
166 |
-
except Exception as e:
|
167 |
-
logger.error(f"Error preparing models for GPU: {e}")
|
168 |
-
raise
|
169 |
-
|
170 |
-
def _prepare_models_for_cpu(self):
|
171 |
-
"""Prepara los modelos para CPU con float32"""
|
172 |
-
try:
|
173 |
-
if hasattr(self.interrogator, 'caption_model'):
|
174 |
-
self.interrogator.caption_model = self.interrogator.caption_model.float().to("cpu")
|
175 |
-
|
176 |
-
if hasattr(self.interrogator, 'clip_model'):
|
177 |
-
self.interrogator.clip_model = self.interrogator.clip_model.float().to("cpu")
|
178 |
-
|
179 |
-
if hasattr(self.interrogator, 'blip_model'):
|
180 |
-
self.interrogator.blip_model = self.interrogator.blip_model.float().to("cpu")
|
181 |
-
|
182 |
-
self.interrogator.config.device = "cpu"
|
183 |
-
logger.info("Models prepared for CPU with FP32")
|
184 |
-
|
185 |
-
except Exception as e:
|
186 |
-
logger.error(f"Error preparing models for CPU: {e}")
|
187 |
-
raise
|
188 |
-
|
189 |
@spaces.GPU(duration=60)
|
190 |
-
def
|
191 |
-
"""
|
192 |
try:
|
193 |
-
#
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
#
|
239 |
-
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
full_prompt = self.interrogator.interrogate(image)
|
243 |
-
clip_fast = self.interrogator.interrogate_fast(image)
|
244 |
-
clip_classic = self.interrogator.interrogate_classic(image)
|
245 |
|
246 |
return full_prompt, clip_fast, clip_classic
|
247 |
|
248 |
except Exception as e:
|
249 |
-
logger.error(f"
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
253 |
"""
|
254 |
-
Generate ultra supreme prompt from image usando
|
255 |
|
256 |
Returns:
|
257 |
Tuple of (prompt, analysis_info, score, breakdown)
|
@@ -275,30 +259,30 @@ class UltraSupremeOptimizer:
|
|
275 |
|
276 |
start_time = datetime.now()
|
277 |
|
278 |
-
logger.info("ULTRA SUPREME ANALYSIS - Starting
|
279 |
|
280 |
-
# Ejecutar inferencia
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
full_prompt = "A photograph"
|
287 |
-
|
288 |
-
|
289 |
|
290 |
-
logger.info(f"
|
291 |
|
292 |
-
#
|
293 |
logger.info("Running multi-model ultra supreme analysis...")
|
294 |
ultra_analysis = self.analyzer.ultra_supreme_analysis(
|
295 |
-
image,
|
296 |
)
|
297 |
|
298 |
# Construir prompt mejorado basado en análisis completo
|
299 |
enhanced_prompt_parts = []
|
300 |
|
301 |
-
# Base prompt de
|
302 |
enhanced_prompt_parts.append(full_prompt)
|
303 |
|
304 |
# Agregar información demográfica si está disponible
|
@@ -339,7 +323,7 @@ class UltraSupremeOptimizer:
|
|
339 |
|
340 |
# Generate enhanced analysis report con datos de múltiples modelos
|
341 |
analysis_info = self._generate_ultra_analysis_report(
|
342 |
-
ultra_analysis, score, breakdown, duration
|
343 |
)
|
344 |
|
345 |
return optimized_prompt, analysis_info, score, breakdown
|
@@ -348,58 +332,9 @@ class UltraSupremeOptimizer:
|
|
348 |
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
|
349 |
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
350 |
|
351 |
-
def _detect_style(self, prompt: str) -> str:
|
352 |
-
"""Detecta el estilo principal del prompt"""
|
353 |
-
styles = {
|
354 |
-
"portrait": ["portrait", "person", "face", "headshot"],
|
355 |
-
"landscape": ["landscape", "mountain", "nature", "scenery"],
|
356 |
-
"street": ["street", "urban", "city"],
|
357 |
-
"artistic": ["artistic", "abstract", "conceptual"],
|
358 |
-
"dramatic": ["dramatic", "cinematic", "moody"]
|
359 |
-
}
|
360 |
-
|
361 |
-
prompt_lower = prompt.lower()
|
362 |
-
for style_name, keywords in styles.items():
|
363 |
-
if any(keyword in prompt_lower for keyword in keywords):
|
364 |
-
return style_name
|
365 |
-
|
366 |
-
return "general"
|
367 |
-
|
368 |
-
def _detect_subject(self, prompt: str) -> str:
|
369 |
-
"""Detecta el sujeto principal del prompt"""
|
370 |
-
if not prompt:
|
371 |
-
return "Unknown"
|
372 |
-
|
373 |
-
# Tomar las primeras palabras significativas
|
374 |
-
words = prompt.split(',')[0].split()
|
375 |
-
if len(words) > 3:
|
376 |
-
return ' '.join(words[:4])
|
377 |
-
return prompt.split(',')[0] if prompt else "Unknown"
|
378 |
-
|
379 |
-
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
380 |
-
"""Calcula el score basado en la calidad del prompt"""
|
381 |
-
score = 0
|
382 |
-
|
383 |
-
# Base score por longitud y riqueza
|
384 |
-
score += min(len(base_prompt) // 10, 25)
|
385 |
-
|
386 |
-
# Technical enhancement
|
387 |
-
if "Shot on" in optimized_prompt:
|
388 |
-
score += 25
|
389 |
-
|
390 |
-
# Lighting quality
|
391 |
-
if "lighting" in optimized_prompt.lower():
|
392 |
-
score += 25
|
393 |
-
|
394 |
-
# Professional quality
|
395 |
-
if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
|
396 |
-
score += 25
|
397 |
-
|
398 |
-
return min(score, 100)
|
399 |
-
|
400 |
def _generate_ultra_analysis_report(self, analysis: Dict[str, Any],
|
401 |
score: int, breakdown: Dict[str, int],
|
402 |
-
duration: float) -> str:
|
403 |
"""Generate ultra detailed analysis report with multi-model results"""
|
404 |
|
405 |
device_used = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -457,9 +392,12 @@ class UltraSupremeOptimizer:
|
|
457 |
# Intelligence metrics
|
458 |
metrics = analysis["intelligence_metrics"]
|
459 |
|
|
|
|
|
|
|
460 |
analysis_info = f"""**🚀 ULTRA SUPREME MULTI-MODEL ANALYSIS COMPLETE**
|
461 |
-
**Processing:** {gpu_status} • {duration:.1f}s • Multi-Model Pipeline
|
462 |
-
**Ultra Score:** {score}/100 • Models:
|
463 |
|
464 |
**📊 BREAKDOWN:**
|
465 |
• Prompt Quality: {breakdown.get('prompt_quality', 0)}/25
|
@@ -467,6 +405,9 @@ class UltraSupremeOptimizer:
|
|
467 |
• Model Confidence: {breakdown.get('model_confidence', 0)}/25
|
468 |
• Feature Richness: {breakdown.get('feature_richness', 0)}/25
|
469 |
|
|
|
|
|
|
|
470 |
**🧠 DEEP ANALYSIS RESULTS:**
|
471 |
|
472 |
**👤 DEMOGRAPHICS & IDENTITY:**
|
@@ -491,9 +432,9 @@ class UltraSupremeOptimizer:
|
|
491 |
• **Technical Optimization:** {metrics['technical_optimization_score']}/100
|
492 |
|
493 |
**✨ MULTI-MODEL ADVANTAGES:**
|
|
|
494 |
✅ DeepFace: Accurate age, gender, emotion detection
|
495 |
✅ MediaPipe: Body pose and gesture analysis
|
496 |
-
✅ CLIP: Semantic understanding and context
|
497 |
✅ Transformers: Advanced emotion classification
|
498 |
✅ OpenCV: Robust face detection
|
499 |
|
|
|
1 |
"""
|
2 |
Ultra Supreme Optimizer - Main optimization engine for image analysis
|
3 |
+
VERSIÓN FLORENCE-2 - Usa Florence-2 en lugar de CLIP Interrogator
|
4 |
"""
|
5 |
|
6 |
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
|
|
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
from PIL import Image
|
17 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
18 |
|
19 |
from analyzer import UltraSupremeAnalyzer
|
20 |
|
|
|
25 |
"""Main optimizer class for ultra supreme image analysis"""
|
26 |
|
27 |
def __init__(self):
|
28 |
+
self.processor = None
|
29 |
+
self.model = None
|
30 |
self.analyzer = UltraSupremeAnalyzer()
|
31 |
self.usage_count = 0
|
32 |
self.device = self._get_device()
|
33 |
self.is_initialized = False
|
|
|
34 |
|
35 |
@staticmethod
|
36 |
def _get_device() -> str:
|
|
|
43 |
return "cpu"
|
44 |
|
45 |
def initialize_model(self) -> bool:
|
46 |
+
"""Initialize Florence-2 model"""
|
47 |
if self.is_initialized:
|
48 |
return True
|
49 |
|
50 |
try:
|
51 |
+
logger.info("Loading Florence-2 model...")
|
52 |
+
|
53 |
+
# Load Florence-2 base model (you can also use 'microsoft/Florence-2-large' for better quality)
|
54 |
+
model_id = "microsoft/Florence-2-base"
|
55 |
+
|
56 |
+
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
57 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
model_id,
|
59 |
+
trust_remote_code=True,
|
60 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
61 |
)
|
62 |
|
63 |
+
# Keep model on CPU initially
|
64 |
+
self.model = self.model.to("cpu")
|
65 |
+
self.model.eval()
|
66 |
+
|
67 |
self.is_initialized = True
|
68 |
|
69 |
# Clean up memory after initialization
|
70 |
gc.collect()
|
71 |
|
72 |
+
logger.info("Florence-2 model initialized successfully")
|
73 |
return True
|
74 |
|
75 |
except Exception as e:
|
76 |
+
logger.error(f"Model initialization error: {e}")
|
77 |
return False
|
78 |
|
79 |
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
|
|
92 |
if image.mode != 'RGB':
|
93 |
image = image.convert('RGB')
|
94 |
|
95 |
+
# Florence-2 handles various sizes well, but let's be reasonable
|
96 |
+
max_size = 1024
|
97 |
if image.size[0] > max_size or image.size[1] > max_size:
|
98 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
99 |
|
|
|
104 |
return None
|
105 |
|
106 |
def apply_flux_rules(self, base_prompt: str) -> str:
|
107 |
+
"""Aplica las reglas de Flux a un prompt base"""
|
108 |
|
109 |
# Limpiar el prompt de elementos no deseados
|
110 |
cleanup_patterns = [
|
|
|
154 |
|
155 |
return final_prompt
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
@spaces.GPU(duration=60)
|
158 |
+
def run_florence_inference(self, image: Image.Image) -> Tuple[str, str, str]:
|
159 |
+
"""Run Florence-2 inference on GPU"""
|
160 |
try:
|
161 |
+
# Move model to GPU
|
162 |
+
self.model = self.model.to("cuda")
|
163 |
+
logger.info("Florence-2 model moved to GPU")
|
164 |
+
|
165 |
+
# Task prompts for different types of analysis
|
166 |
+
tasks = {
|
167 |
+
"detailed_caption": "<DETAILED_CAPTION>",
|
168 |
+
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
|
169 |
+
"caption": "<CAPTION>",
|
170 |
+
"dense_region_caption": "<DENSE_REGION_CAPTION>"
|
171 |
+
}
|
172 |
+
|
173 |
+
results = {}
|
174 |
+
|
175 |
+
# Run different captioning tasks
|
176 |
+
for task_name, task_prompt in tasks.items():
|
177 |
+
try:
|
178 |
+
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
|
179 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
180 |
+
|
181 |
+
with torch.cuda.amp.autocast(dtype=torch.float16):
|
182 |
+
generated_ids = self.model.generate(
|
183 |
+
input_ids=inputs["input_ids"],
|
184 |
+
pixel_values=inputs["pixel_values"],
|
185 |
+
max_new_tokens=1024,
|
186 |
+
num_beams=3,
|
187 |
+
do_sample=False
|
188 |
+
)
|
189 |
+
|
190 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
191 |
+
parsed = self.processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
192 |
+
|
193 |
+
# Extract the caption from the parsed result
|
194 |
+
if task_prompt in parsed:
|
195 |
+
results[task_name] = parsed[task_prompt]
|
196 |
+
else:
|
197 |
+
# Sometimes the result is directly in the parsed output
|
198 |
+
results[task_name] = str(parsed) if parsed else ""
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
logger.warning(f"Error in {task_name}: {e}")
|
202 |
+
results[task_name] = ""
|
203 |
+
|
204 |
+
# Extract results
|
205 |
+
detailed_caption = results.get("detailed_caption", "")
|
206 |
+
more_detailed = results.get("more_detailed_caption", "")
|
207 |
+
caption = results.get("caption", "")
|
208 |
+
|
209 |
+
# Combine for a comprehensive description
|
210 |
+
if more_detailed:
|
211 |
+
full_prompt = more_detailed
|
212 |
+
elif detailed_caption:
|
213 |
+
full_prompt = detailed_caption
|
214 |
+
else:
|
215 |
+
full_prompt = caption
|
216 |
|
217 |
+
# Use different levels as our three outputs
|
218 |
+
clip_fast = caption if caption else "A photograph"
|
219 |
+
clip_classic = detailed_caption if detailed_caption else full_prompt
|
220 |
+
clip_best = more_detailed if more_detailed else full_prompt
|
221 |
|
222 |
+
logger.info(f"Florence-2 captions generated successfully")
|
|
|
|
|
|
|
223 |
|
224 |
return full_prompt, clip_fast, clip_classic
|
225 |
|
226 |
except Exception as e:
|
227 |
+
logger.error(f"Florence-2 inference error: {e}")
|
228 |
+
# Move model back to CPU to free GPU memory
|
229 |
+
self.model = self.model.to("cpu")
|
230 |
+
raise e
|
231 |
+
finally:
|
232 |
+
# Always move model back to CPU after inference
|
233 |
+
self.model = self.model.to("cpu")
|
234 |
+
torch.cuda.empty_cache()
|
235 |
|
236 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
237 |
"""
|
238 |
+
Generate ultra supreme prompt from image usando Florence-2
|
239 |
|
240 |
Returns:
|
241 |
Tuple of (prompt, analysis_info, score, breakdown)
|
|
|
259 |
|
260 |
start_time = datetime.now()
|
261 |
|
262 |
+
logger.info("ULTRA SUPREME ANALYSIS - Starting with Florence-2")
|
263 |
|
264 |
+
# Ejecutar inferencia Florence-2
|
265 |
+
try:
|
266 |
+
full_prompt, caption_fast, caption_detailed = self.run_florence_inference(image)
|
267 |
+
except Exception as e:
|
268 |
+
logger.error(f"Florence-2 failed: {e}")
|
269 |
+
# Fallback básico
|
270 |
full_prompt = "A photograph"
|
271 |
+
caption_fast = "image"
|
272 |
+
caption_detailed = "detailed image"
|
273 |
|
274 |
+
logger.info(f"Florence-2 caption: {full_prompt[:100]}...")
|
275 |
|
276 |
+
# Ejecutar análisis ultra supremo con múltiples modelos
|
277 |
logger.info("Running multi-model ultra supreme analysis...")
|
278 |
ultra_analysis = self.analyzer.ultra_supreme_analysis(
|
279 |
+
image, caption_fast, caption_detailed, full_prompt
|
280 |
)
|
281 |
|
282 |
# Construir prompt mejorado basado en análisis completo
|
283 |
enhanced_prompt_parts = []
|
284 |
|
285 |
+
# Base prompt de Florence
|
286 |
enhanced_prompt_parts.append(full_prompt)
|
287 |
|
288 |
# Agregar información demográfica si está disponible
|
|
|
323 |
|
324 |
# Generate enhanced analysis report con datos de múltiples modelos
|
325 |
analysis_info = self._generate_ultra_analysis_report(
|
326 |
+
ultra_analysis, score, breakdown, duration, "Florence-2"
|
327 |
)
|
328 |
|
329 |
return optimized_prompt, analysis_info, score, breakdown
|
|
|
332 |
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
|
333 |
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
def _generate_ultra_analysis_report(self, analysis: Dict[str, Any],
|
336 |
score: int, breakdown: Dict[str, int],
|
337 |
+
duration: float, caption_model: str = "Florence-2") -> str:
|
338 |
"""Generate ultra detailed analysis report with multi-model results"""
|
339 |
|
340 |
device_used = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
392 |
# Intelligence metrics
|
393 |
metrics = analysis["intelligence_metrics"]
|
394 |
|
395 |
+
# Caption info
|
396 |
+
caption_info = analysis.get("clip_best", "")[:150] + "..." if len(analysis.get("clip_best", "")) > 150 else analysis.get("clip_best", "")
|
397 |
+
|
398 |
analysis_info = f"""**🚀 ULTRA SUPREME MULTI-MODEL ANALYSIS COMPLETE**
|
399 |
+
**Processing:** {gpu_status} • {duration:.1f}s • {caption_model} + Multi-Model Pipeline
|
400 |
+
**Ultra Score:** {score}/100 • Models: {caption_model} + DeepFace + MediaPipe + Transformers
|
401 |
|
402 |
**📊 BREAKDOWN:**
|
403 |
• Prompt Quality: {breakdown.get('prompt_quality', 0)}/25
|
|
|
405 |
• Model Confidence: {breakdown.get('model_confidence', 0)}/25
|
406 |
• Feature Richness: {breakdown.get('feature_richness', 0)}/25
|
407 |
|
408 |
+
**📝 VISION-LANGUAGE ANALYSIS:**
|
409 |
+
**{caption_model} Caption:** {caption_info}
|
410 |
+
|
411 |
**🧠 DEEP ANALYSIS RESULTS:**
|
412 |
|
413 |
**👤 DEMOGRAPHICS & IDENTITY:**
|
|
|
432 |
• **Technical Optimization:** {metrics['technical_optimization_score']}/100
|
433 |
|
434 |
**✨ MULTI-MODEL ADVANTAGES:**
|
435 |
+
✅ {caption_model}: State-of-the-art vision-language understanding
|
436 |
✅ DeepFace: Accurate age, gender, emotion detection
|
437 |
✅ MediaPipe: Body pose and gesture analysis
|
|
|
438 |
✅ Transformers: Advanced emotion classification
|
439 |
✅ OpenCV: Robust face detection
|
440 |
|