Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,25 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
def mask(text):
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Gradio UI
|
10 |
examples=[['Today I went to [MASK] after I got out of bed.']]
|
@@ -17,4 +33,4 @@ ui = gr.Interface(
|
|
17 |
description="Enter some text with [MASK] to let BERT guess the missing word!",
|
18 |
examples=examples
|
19 |
)
|
20 |
-
ui.launch(debug=True)
|
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
def mask(text):
|
5 |
+
mask_model = pipeline("fill-mask", model="google-bert/bert-base-uncased")
|
6 |
+
|
7 |
+
# Extract labels (classes) and scores from predictions
|
8 |
+
labels = [result["label"] for result in mask_model]
|
9 |
+
scores = [result["score"] for result in mask_model]
|
10 |
+
|
11 |
+
# Find the index of the best prediction (highest score)
|
12 |
+
best_prediction_idx = scores.index(max(scores))
|
13 |
+
|
14 |
+
# Create a dictionary with results
|
15 |
+
response_dict = {
|
16 |
+
"Original Text": text,
|
17 |
+
"All Predictions": labels,
|
18 |
+
"Best Prediction": f"**{labels[best_prediction_idx]}** (Score: {scores[best_prediction_idx]:.4f})"
|
19 |
+
}
|
20 |
+
|
21 |
+
return response_dict
|
22 |
+
# output = mask_model(text)
|
23 |
+
# return output[0]['sequence']
|
24 |
|
25 |
# Gradio UI
|
26 |
examples=[['Today I went to [MASK] after I got out of bed.']]
|
|
|
33 |
description="Enter some text with [MASK] to let BERT guess the missing word!",
|
34 |
examples=examples
|
35 |
)
|
36 |
+
ui.launch(debug=True)
|