File size: 8,025 Bytes
23a6a28
 
 
 
 
 
 
 
 
 
3358ae6
 
23a6a28
 
 
1cbf7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23a6a28
 
 
 
 
 
 
 
 
 
b1286d3
 
23a6a28
 
b1286d3
 
23a6a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cbf7e8
 
23a6a28
 
 
 
 
 
 
 
 
83d3fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301d4b
23a6a28
 
 
 
 
 
 
 
 
 
919f8f8
 
 
1301d4b
 
 
9cc8bea
 
 
23a6a28
 
 
1301d4b
 
9cc8bea
 
 
 
 
 
 
23a6a28
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import sys
import subprocess
import streamlit as st
import io 
import pypdfium2 
from PIL import Image
import logging

# 设置日志记录器
# logging.basicConfig(level=logging.INFO)
logging.basicConfig(level=logging.ERROR)
logger = logging.getLogger(__name__)


def resize_image_if_needed(pil_image, max_size_mb=1, max_edge_length=1024):
    """
    Detect the size of a PIL image, and if it exceeds 1MB or its long edge is larger than 1024 pixels,
    reduce its size to a smaller size.
    
    Args:
        pil_image (PIL.Image.Image): The input PIL image.
        max_size_mb (int): The maximum allowed size in megabytes.
        max_edge_length (int): The maximum allowed length of the long edge in pixels.
    
    Returns:
        PIL.Image.Image: The resized PIL image.
    """
    # Convert image to bytes and check its size
    img_byte_arr = io.BytesIO()
    pil_image.save(img_byte_arr, format='JPEG')
    img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
    print(f"Image size: {img_size_mb} MB")
    
    # Check if the image size exceeds the maximum allowed size
    if img_size_mb > max_size_mb or max(pil_image.size) > max_edge_length:
        # Calculate the new size while maintaining the aspect ratio
        aspect_ratio = pil_image.width / pil_image.height
        if pil_image.width > pil_image.height:
            new_width = min(max_edge_length, pil_image.width)
            new_height = int(new_width / aspect_ratio)
        else:
            new_height = min(max_edge_length, pil_image.height)
            new_width = int(new_height * aspect_ratio)
        
        # Resize the image
        pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
        
        # Convert the resized image to bytes and check its size again
        img_byte_arr = io.BytesIO()
        pil_image.save(img_byte_arr, format='JPEG')
        img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
        
        # If the resized image still exceeds the maximum allowed size, reduce the quality
        if img_size_mb > max_size_mb:
            quality = 95
            while img_size_mb > max_size_mb and quality > 10:
                img_byte_arr = io.BytesIO()
                pil_image.save(img_byte_arr, format='JPEG', quality=quality)
                img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
                quality -= 5
                
    return pil_image


def clone_repo():
    # 从环境变量中获取 GitHub Token
    github_token = os.getenv('GH_TOKEN')

    if github_token is None:
        logger.error("GitHub token is not set. Please set the GH_TOKEN secret in your Space settings.")
        return False
    
    # 使用 GitHub Token 进行身份验证并克隆仓库
    clone_command = f'git clone https://{github_token}@github.com/mamba-ai/invoice_agent.git'
    repo_dir = 'invoice_agent'
    if os.path.exists(repo_dir):
        logger.warning("Repository already exists.")
        # 将仓库路径添加到 Python 模块搜索路径中
        # logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
        # sys.path.append(os.path.abspath(repo_dir))
        return True
    else:
        logger.info("Cloning repository...")
        result = subprocess.run(clone_command, shell=True, capture_output=True, text=True)
    
    if result.returncode == 0:
        logger.warning("Repository cloned successfully.")
        repo_dir = 'invoice_agent'
        
        # 将仓库路径添加到 Python 模块搜索路径中
        sys.path.append(os.path.abspath(repo_dir))
        logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
        return True
    else:
        logger.error(f"Failed to clone repository: {result.stderr}")
        return False



if clone_repo():
    # 克隆成功后导入模块    
    import invoice_agent.agent as ia
    # from invoice_agent.agent import load_models, get_ocr_predictions, get_json_result
    
    def open_pdf(pdf_file):
        stream = io.BytesIO(pdf_file.getvalue())
        return pypdfium2.PdfDocument(stream)


    @st.cache_data()
    def get_page_image(pdf_file, page_num, dpi=96):
        doc = open_pdf(pdf_file)
        renderer = doc.render(
            pypdfium2.PdfBitmap.to_pil,
            page_indices=[page_num - 1],
            scale=dpi / 72,
        )
        png = list(renderer)[0]
        png_image = png.convert("RGB")
        return png_image


    @st.cache_data()
    def page_count(pdf_file):
        doc = open_pdf(pdf_file)
        return len(doc)
    
    st.set_page_config(layout="wide")

    models = ia.load_models()

    st.title("""
    受領した請求書を自動で電子化 (Demo)
    """)

    col1, _, col2 = st.columns([.45, 0.1, .45])

    in_file = st.sidebar.file_uploader(
        "PDFファイルまたは画像:", 
        type=["pdf", "png", "jpg", "jpeg", "gif", "webp"],
    )

    if in_file is None:
        st.stop()

    filetype = in_file.type
    whole_image = False
    if "pdf" in filetype:
        page_count = page_count(in_file)
        page_number = st.sidebar.number_input(f"ページ番号 {page_count}:", min_value=1, value=1, max_value=page_count)

        pil_image = get_page_image(in_file, page_number)
    else:
        pil_image = Image.open(in_file).convert("RGB")
    pil_image = resize_image_if_needed(pil_image)
    
    text_rec = st.sidebar.button("認識開始")

    if pil_image is None:
        st.stop()
    
    with col1:
        st.write("## アップロードされたファイル")
        st.image(pil_image, caption="アップロードされたファイル", use_column_width=True)
    
    # if 'json_predictions' in st.session_state:
    #     prev_json_predictions = st.session_state.json_predictions
    #     prev_excel_file_path = st.session_state.excel_file_path
    #     with col2:
    #         st.write("## 結果")
    #         # 提供下载链接
    #         with open(prev_excel_file_path, "rb") as file:
    #             st.download_button(
    #                 label="Download Excel",
    #                 data=file,
    #                 file_name="output.xlsx",
    #                 mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
    #             )
    #         st.write("解析後の内容:")
    #         st.json(prev_json_predictions)
        
    if text_rec:
        with col2:
            st.write("## 結果")
        
            # Placeholder for status indicator
            status_placeholder = st.empty()
        
            with st.spinner('現在ファイルを解析中です'):
                # Simulate model running time
                # time.sleep(5)  # Replace this with actual model running code
                # predictions = ia.get_ocr_predictions(pil_image, models)
                # json_predictions = ia.get_json_result(predictions)
                json_predictions = ia.get_json_result_v2(pil_image, models)
                st.session_state.json_predictions = json_predictions
                
                # Convert JSON to Excel
                # excel_file_path = "output.xlsx"
                # st.session_state.excel_file_path = excel_file_path
                # ia.json_to_excel_with_links(json_predictions, excel_file_path)
            
                # After model finishes
                status_placeholder.success('ファイルの解析が完了しました!')

                # 提供下载链接
                # with open(excel_file_path, "rb") as file:
                #     st.download_button(
                #         label="Download Excel",
                #         data=file,
                #         file_name="output.xlsx",
                #         mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                #     )
            
                # Display the result
                st.write("解析後の内容:")
                st.json(json_predictions)
                # st.write(predictions)