Spaces:
Runtime error
Runtime error
File size: 10,584 Bytes
c4d2a5f 6f9298b c4d2a5f 05caf50 c4d2a5f 353b769 c4d2a5f 05caf50 c4d2a5f 05caf50 c4d2a5f 353b769 c4d2a5f 05caf50 c4d2a5f 05caf50 c4d2a5f 05caf50 c4d2a5f 05caf50 ab67d2e c4d2a5f 05caf50 c4d2a5f 05caf50 c4d2a5f 353b769 c4d2a5f 05caf50 c4d2a5f 05caf50 c4d2a5f 353b769 c4d2a5f 05caf50 c4d2a5f 6f9298b c4d2a5f 6f9298b c4d2a5f 05caf50 c4d2a5f ab908c2 c4d2a5f 05caf50 c4d2a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from fasthtml_hf import setup_hf_backup
import os
import pandas as pd
import traceback
from datetime import datetime
from typing import Literal
from pydantic import BaseModel, Field
from fasthtml.common import *
from langchain_core.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
from langchain_community.tools.wikipedia.tool import WikipediaQueryRun
# Set up the app, including daisyui and tailwind for the chat component
tlink = Script(src="https://cdn.tailwindcss.com"),
dlink = Link(rel="stylesheet", href="https://cdn.jsdelivr.net/npm/[email protected]/dist/full.min.css")
assets_dir = "/Users/manaranjanp/Documents/Work/MyLearnings/fastHTML/llmtimeline/assets"
app = FastHTML(hdrs=(tlink, dlink, picolink))
# Pydantic models
class Event(BaseModel):
time: datetime = Field(description="When the event occurred")
description: str = Field(description="A summary of what happened. Not more than 20 words.")
sentiment: Literal["Positive", "Negative"] = Field(..., description="Categorization of the event sentiment")
class EventResponse(BaseModel):
events: List[Event] = Field(min_length=5, max_length=30, description="List of events extracted from the context")
# Set up the Pydantic output parser
parser = PydanticOutputParser(pydantic_object=EventResponse)
# LangChain prompt template with format instructions
event_extraction_template = """
Extract the time based informations or events from the context and return a list of events with time, event description and event sentiment type whether it was positive or negative event.
The context may contain information about people, organization or any other entity.
<context>
{context}
</context>
The response must follow the following schema strictly. There will be penalty for not following the schema.
<schema>
{format_instructions}
</schema>
Must ensure the event belongs to the topic {topic} and try to get at least {numevents} unique events possible from the context.
Output:
"""
event_prompt = PromptTemplate(
input_variables=["topic", "context"],
partial_variables={"format_instructions": parser.get_format_instructions()},
template=event_extraction_template
)
# Function to get the appropriate language model based on user selection
def getModel(model, key):
if(model == 'OpenAI Gpt-4o'):
os.environ['OPENAI_API_KEY'] = key
return ChatOpenAI(temperature=0, # Set to 0 for deterministic output
model="gpt-4o-2024-08-06", # Using the GPT-4 Turbo model
max_tokens=8000) # Limit the response length
elif (model == 'Anthropic Claude'):
os.environ['ANTHROPIC_API_KEY'] = key
return ChatAnthropic(model='claude-3-5-sonnet-20240620') # Limit the response length
else:
os.environ['GOOGLE_API_KEY'] = key
return ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0,
max_tokens=8000,
max_retries=2,
)
# Function to generate an HTML table from the summary object
#def generate_timeline_html(timeline):
# rows = []
# for idx, tline in timeline.iterrows():
# if(tline['Sentiment'] == "Positive"):
# rows.append(Div(Div( H2(tline['Time']), P(tline['Event']), cls = 'content'), cls = "container left"))
# else:
# rows.append(Div(Div( H2(tline['Time']), P(tline['Event']), cls = 'content'), cls = "container right"))
#
# return Div(*rows, cls="timeline")
# Function to generate an HTML table from the summary object
def generate_timeline_html(timeline):
rows = []
for idx, tline in timeline.iterrows():
if idx % 2 == 0:
rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
Div(Time(tline['TimeStr'],
cls = "font-mono italic"),
Div(tline['Event'],
cls = 'text-lg font-black'),
cls = "timeline-start mb-10 md:text-end"),
Hr()))
else:
rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
Div(Time(tline['TimeStr'],
cls = "font-mono italic"),
Div(tline['Event'],
cls = 'text-lg font-black'),
cls = "timeline-end mb-10"),
Hr()))
return Ul(*rows, cls="timeline timeline-vertical")
def get_timeline_df(result):
results_data = []
# Parse the final result into GradedQAPair objects
try:
if not isinstance(result, EventResponse):
raise ValueError(f"Expected a list, but got {type(result)}")
except Exception as e:
print(f"An error occurred during analysis: {str(e)}")
raise
except Exception as e:
print(f"An error occurred during analysis: {str(e)}")
raise
if isinstance(result, EventResponse):
# Create a list to hold the data for the DataFrame
for event in result.events:
results_data.append({
'Time': event.time,
'Event': event.description,
'Sentiment': event.sentiment
})
df = pd.DataFrame(results_data)
df = df.sort_values("Time", ascending = True).reset_index()
df['TimeStr'] = df['Time'].map(lambda x: x.strftime('%d/%m/%Y'))
return df
# Placeholder function for Q&A generation
def generate_timeline(topic, numevents, llm):
# This function will be implemented later
# For now, return a sample DataFrame
# titles = wikipedia.search(topic, results = 1)
# page = wikipedia.page(titles[0])
# wiki_content = page.content
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=3, doc_content_chars_max=5000))
wiki_content = wikipedia.run(topic)
print(f"wiki_content: {wiki_content}")
# print(f"wiki_artifact: {wiki_artifact}")
chain = event_prompt | llm | parser
result = chain.invoke({"context" : wiki_content,
"topic": topic,
"numevents": numevents})
try:
# Parse the output using PydanticOutputParser
# response = parser.parse(result)
# Create the DataFrame
print(f"Results: {result}")
# timeline = parser.parse(result)
df = get_timeline_df(result)
# Optionally, save the DataFrame to a CSV file
df.to_csv(f"{topic.replace(' ', '_')}_timeline.csv", index=True)
print("Results saved to 'results.csv'")
except Exception as e:
print(f"Error parsing LLM output: {str(e)}")
return None
return df
# Function to generate the configuration form for the web interface
def getConfigForm():
return Card(Form(hx_post="/submit", hx_target="#result", hx_swap_oob="innerHTML", hx_indicator="#indicator")(
Div(
Label(Strong("Model and Topic: "), style="color:#3498db; font-size:25px;")
),
Div(
Span(Strong('Model: '), cls ="badge"),
Select(Option("OpenAI Gpt-4o"), Option("Anthropic Claude"), Option("Google Gemini"), id="model", cls = 'select w-full max-w-xs')
),
Div(
Span(Strong('API Key: '), cls ="badge"),
Input(id="secret", type="password", placeholder="Key: "),
),
Div(
Span(Strong('Topic for timeline (Person/Organization/Event): '), cls ="badge"),
Input(type = 'text',
id="topic",
cls = "input w-full max-w-xs",
placeholder = "Type here")
),
Div(
Span(Strong('How many events: '), cls ="badge"),
Select(Option("5"), Option("10"), Option("20"), Option("30"), id="numevents", cls = 'select w-full max-w-xs')
),
Div(
Button("Generate Timeline", cls = 'btn')
),
Div(
Br(),
A("Developed by Manaranjan Pradhan", href="http://www.manaranjanp.com/",
target="_blank",
style = 'color: red; font-size: 16px;')
)))
# Define the route for the homepage
@app.get('/')
def homepage():
return Titled(Card(H2('Generate a Timeline Dashboard using AI', cls = 'text-4xl font-bold')), Grid( getConfigForm(),
Div(
Div(id="result"),
Div(Label(Strong('Generating timeline for the topic.... take a deep breath....')),
Progress(), id="indicator", cls="htmx-indicator")
)
, style="grid-template-columns: 400px 1000px; gap: 50px;"
))
@app.get('/assets/{fname:path}.{ext}')
async def get(fname: str, ext: str):
fpath:str = (assets_dir)+'/'+str(fname)+'.'+str(ext)
if os.path.isfile(fpath):
response = FileResponse(fpath, media_type="image/svg")
print("file sent:"+fpath)
else:
print("file failed:"+fpath)
response = HTTPException(status_code=404, detail="File not found")
# Define the route for form submission
@app.post('/submit')
async def post(d:dict):
try:
# Get the appropriate language model
model = getModel(d['model'], d['secret'])
# Perform one-pass summarization
timeline_df = generate_timeline(d['topic'],
d['numevents'],
model)
#qas = pd.read_csv("results_tesla.csv")
timeline_df.head(10)
# Generate and return the HTML table with the summaries
return generate_timeline_html(timeline_df)
except BaseException as e:
print(traceback.format_exc())
return str(e)
setup_hf_backup(app)
# Start the FastAPI server
serve()
|