File size: 5,469 Bytes
bf69e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# vim: expandtab:ts=4:sw=4
import numpy as np


def _pdist(a, b):
    """Compute pair-wise squared distance between points in `a` and `b`.

    Parameters
    ----------
    a : array_like
        An NxM matrix of N samples of dimensionality M.
    b : array_like
        An LxM matrix of L samples of dimensionality M.

    Returns
    -------
    ndarray
        Returns a matrix of size len(a), len(b) such that eleement (i, j)
        contains the squared distance between `a[i]` and `b[j]`.

    """
    a, b = np.asarray(a), np.asarray(b)
    if len(a) == 0 or len(b) == 0:
        return np.zeros((len(a), len(b)))
    a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
    r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
    r2 = np.clip(r2, 0., float(np.inf))
    return r2


def _cosine_distance(a, b, data_is_normalized=False):
    """Compute pair-wise cosine distance between points in `a` and `b`.

    Parameters
    ----------
    a : array_like
        An NxM matrix of N samples of dimensionality M.
    b : array_like
        An LxM matrix of L samples of dimensionality M.
    data_is_normalized : Optional[bool]
        If True, assumes rows in a and b are unit length vectors.
        Otherwise, a and b are explicitly normalized to lenght 1.

    Returns
    -------
    ndarray
        Returns a matrix of size len(a), len(b) such that eleement (i, j)
        contains the squared distance between `a[i]` and `b[j]`.

    """
    if not data_is_normalized:
        a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
        b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
    return 1. - np.dot(a, b.T)


def _nn_euclidean_distance(x, y):
    """ Helper function for nearest neighbor distance metric (Euclidean).

    Parameters
    ----------
    x : ndarray
        A matrix of N row-vectors (sample points).
    y : ndarray
        A matrix of M row-vectors (query points).

    Returns
    -------
    ndarray
        A vector of length M that contains for each entry in `y` the
        smallest Euclidean distance to a sample in `x`.

    """
    distances = _pdist(x, y)
    return np.maximum(0.0, distances.min(axis=0))


def _nn_cosine_distance(x, y):
    """ Helper function for nearest neighbor distance metric (cosine).

    Parameters
    ----------
    x : ndarray
        A matrix of N row-vectors (sample points).
    y : ndarray
        A matrix of M row-vectors (query points).

    Returns
    -------
    ndarray
        A vector of length M that contains for each entry in `y` the
        smallest cosine distance to a sample in `x`.

    """
    distances = _cosine_distance(x, y)
    return distances.min(axis=0)


class NearestNeighborDistanceMetric(object):
    """
    A nearest neighbor distance metric that, for each target, returns
    the closest distance to any sample that has been observed so far.

    Parameters
    ----------
    metric : str
        Either "euclidean" or "cosine".
    matching_threshold: float
        The matching threshold. Samples with larger distance are considered an
        invalid match.
    budget : Optional[int]
        If not None, fix samples per class to at most this number. Removes
        the oldest samples when the budget is reached.

    Attributes
    ----------
    samples : Dict[int -> List[ndarray]]
        A dictionary that maps from target identities to the list of samples
        that have been observed so far.

    """

    def __init__(self, metric, matching_threshold, budget=None):


        if metric == "euclidean":
            self._metric = _nn_euclidean_distance
        elif metric == "cosine":
            self._metric = _nn_cosine_distance
        else:
            raise ValueError(
                "Invalid metric; must be either 'euclidean' or 'cosine'")
        self.matching_threshold = matching_threshold
        self.budget = budget
        self.samples = {}

    def partial_fit(self, features, targets, active_targets):
        """Update the distance metric with new data.

        Parameters
        ----------
        features : ndarray
            An NxM matrix of N features of dimensionality M.
        targets : ndarray
            An integer array of associated target identities.
        active_targets : List[int]
            A list of targets that are currently present in the scene.

        """
        for feature, target in zip(features, targets):
            self.samples.setdefault(target, []).append(feature)
            if self.budget is not None:
                self.samples[target] = self.samples[target][-self.budget:]
        self.samples = {k: self.samples[k] for k in active_targets}

    def distance(self, features, targets):
        """Compute distance between features and targets.

        Parameters
        ----------
        features : ndarray
            An NxM matrix of N features of dimensionality M.
        targets : List[int]
            A list of targets to match the given `features` against.

        Returns
        -------
        ndarray
            Returns a cost matrix of shape len(targets), len(features), where
            element (i, j) contains the closest squared distance between
            `targets[i]` and `features[j]`.

        """
        cost_matrix = np.zeros((len(targets), len(features)))
        for i, target in enumerate(targets):
            cost_matrix[i, :] = self._metric(self.samples[target], features)
        return cost_matrix