File size: 7,999 Bytes
bf69e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# vim: expandtab:ts=4:sw=4
import os
import errno
import argparse
import numpy as np
import cv2
import tensorflow.compat.v1 as tf

#tf.compat.v1.disable_eager_execution()

physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
    tf.config.experimental.set_memory_growth(physical_devices[0], True)

def _run_in_batches(f, data_dict, out, batch_size):
    data_len = len(out)
    num_batches = int(data_len / batch_size)

    s, e = 0, 0
    for i in range(num_batches):
        s, e = i * batch_size, (i + 1) * batch_size
        batch_data_dict = {k: v[s:e] for k, v in data_dict.items()}
        out[s:e] = f(batch_data_dict)
    if e < len(out):
        batch_data_dict = {k: v[e:] for k, v in data_dict.items()}
        out[e:] = f(batch_data_dict)


def extract_image_patch(image, bbox, patch_shape):
    """Extract image patch from bounding box.

    Parameters
    ----------
    image : ndarray
        The full image.
    bbox : array_like
        The bounding box in format (x, y, width, height).
    patch_shape : Optional[array_like]
        This parameter can be used to enforce a desired patch shape
        (height, width). First, the `bbox` is adapted to the aspect ratio
        of the patch shape, then it is clipped at the image boundaries.
        If None, the shape is computed from :arg:`bbox`.

    Returns
    -------
    ndarray | NoneType
        An image patch showing the :arg:`bbox`, optionally reshaped to
        :arg:`patch_shape`.
        Returns None if the bounding box is empty or fully outside of the image
        boundaries.

    """
    bbox = np.array(bbox)
    if patch_shape is not None:
        # correct aspect ratio to patch shape
        target_aspect = float(patch_shape[1]) / patch_shape[0]
        new_width = target_aspect * bbox[3]
        bbox[0] -= (new_width - bbox[2]) / 2
        bbox[2] = new_width

    # convert to top left, bottom right
    bbox[2:] += bbox[:2]
    bbox = bbox.astype(np.int32)

    # clip at image boundaries
    bbox[:2] = np.maximum(0, bbox[:2])
    bbox[2:] = np.minimum(np.asarray(image.shape[:2][::-1]) - 1, bbox[2:])
    if np.any(bbox[:2] >= bbox[2:]):
        return None
    sx, sy, ex, ey = bbox
    image = image[sy:ey, sx:ex]
    image = cv2.resize(image, tuple(patch_shape[::-1]))
    return image


class ImageEncoder(object):

    def __init__(self, checkpoint_filename, input_name="images",
                 output_name="features"):
        self.session = tf.Session()
        with tf.gfile.GFile(checkpoint_filename, "rb") as file_handle:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(file_handle.read())
        tf.import_graph_def(graph_def, name="net")
        self.input_var = tf.get_default_graph().get_tensor_by_name(
            "%s:0" % input_name)
        self.output_var = tf.get_default_graph().get_tensor_by_name(
            "%s:0" % output_name)

        assert len(self.output_var.get_shape()) == 2
        assert len(self.input_var.get_shape()) == 4
        self.feature_dim = self.output_var.get_shape().as_list()[-1]
        self.image_shape = self.input_var.get_shape().as_list()[1:]

    def __call__(self, data_x, batch_size=32):
        out = np.zeros((len(data_x), self.feature_dim), np.float32)
        _run_in_batches(
            lambda x: self.session.run(self.output_var, feed_dict=x),
            {self.input_var: data_x}, out, batch_size)
        return out


def create_box_encoder(model_filename, input_name="images",
                       output_name="features", batch_size=32):
    image_encoder = ImageEncoder(model_filename, input_name, output_name)
    image_shape = image_encoder.image_shape

    def encoder(image, boxes):
        image_patches = []
        for box in boxes:
            patch = extract_image_patch(image, box, image_shape[:2])
            if patch is None:
                print("WARNING: Failed to extract image patch: %s." % str(box))
                patch = np.random.uniform(
                    0., 255., image_shape).astype(np.uint8)
            image_patches.append(patch)
        image_patches = np.asarray(image_patches)
        return image_encoder(image_patches, batch_size)

    return encoder


def generate_detections(encoder, mot_dir, output_dir, detection_dir=None):
    """Generate detections with features.

    Parameters
    ----------
    encoder : Callable[image, ndarray] -> ndarray
        The encoder function takes as input a BGR color image and a matrix of
        bounding boxes in format `(x, y, w, h)` and returns a matrix of
        corresponding feature vectors.
    mot_dir : str
        Path to the MOTChallenge directory (can be either train or test).
    output_dir
        Path to the output directory. Will be created if it does not exist.
    detection_dir
        Path to custom detections. The directory structure should be the default
        MOTChallenge structure: `[sequence]/det/det.txt`. If None, uses the
        standard MOTChallenge detections.

    """
    if detection_dir is None:
        detection_dir = mot_dir
    try:
        os.makedirs(output_dir)
    except OSError as exception:
        if exception.errno == errno.EEXIST and os.path.isdir(output_dir):
            pass
        else:
            raise ValueError(
                "Failed to created output directory '%s'" % output_dir)

    for sequence in os.listdir(mot_dir):
        print("Processing %s" % sequence)
        sequence_dir = os.path.join(mot_dir, sequence)

        image_dir = os.path.join(sequence_dir, "img1")
        image_filenames = {
            int(os.path.splitext(f)[0]): os.path.join(image_dir, f)
            for f in os.listdir(image_dir)}

        detection_file = os.path.join(
            detection_dir, sequence, "det/det.txt")
        detections_in = np.loadtxt(detection_file, delimiter=',')
        detections_out = []

        frame_indices = detections_in[:, 0].astype(np.int32)
        min_frame_idx = frame_indices.astype(np.int32).min()
        max_frame_idx = frame_indices.astype(np.int32).max()
        for frame_idx in range(min_frame_idx, max_frame_idx + 1):
            print("Frame %05d/%05d" % (frame_idx, max_frame_idx))
            mask = frame_indices == frame_idx
            rows = detections_in[mask]

            if frame_idx not in image_filenames:
                print("WARNING could not find image for frame %d" % frame_idx)
                continue
            bgr_image = cv2.imread(
                image_filenames[frame_idx], cv2.IMREAD_COLOR)
            features = encoder(bgr_image, rows[:, 2:6].copy())
            detections_out += [np.r_[(row, feature)] for row, feature
                               in zip(rows, features)]

        output_filename = os.path.join(output_dir, "%s.npy" % sequence)
        np.save(
            output_filename, np.asarray(detections_out), allow_pickle=False)


def parse_args():
    """Parse command line arguments.
    """
    parser = argparse.ArgumentParser(description="Re-ID feature extractor")
    parser.add_argument(
        "--model",
        default="resources/networks/mars-small128.pb",
        help="Path to freezed inference graph protobuf.")
    parser.add_argument(
        "--mot_dir", help="Path to MOTChallenge directory (train or test)",
        required=True)
    parser.add_argument(
        "--detection_dir", help="Path to custom detections. Defaults to "
        "standard MOT detections Directory structure should be the default "
        "MOTChallenge structure: [sequence]/det/det.txt", default=None)
    parser.add_argument(
        "--output_dir", help="Output directory. Will be created if it does not"
        " exist.", default="detections")
    return parser.parse_args()


def main():
    args = parse_args()
    encoder = create_box_encoder(args.model, batch_size=32)
    generate_detections(encoder, args.mot_dir, args.output_dir,
                        args.detection_dir)


if __name__ == "__main__":
    main()