Spaces:
Runtime error
Runtime error
File size: 7,999 Bytes
bf69e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# vim: expandtab:ts=4:sw=4
import os
import errno
import argparse
import numpy as np
import cv2
import tensorflow.compat.v1 as tf
#tf.compat.v1.disable_eager_execution()
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
def _run_in_batches(f, data_dict, out, batch_size):
data_len = len(out)
num_batches = int(data_len / batch_size)
s, e = 0, 0
for i in range(num_batches):
s, e = i * batch_size, (i + 1) * batch_size
batch_data_dict = {k: v[s:e] for k, v in data_dict.items()}
out[s:e] = f(batch_data_dict)
if e < len(out):
batch_data_dict = {k: v[e:] for k, v in data_dict.items()}
out[e:] = f(batch_data_dict)
def extract_image_patch(image, bbox, patch_shape):
"""Extract image patch from bounding box.
Parameters
----------
image : ndarray
The full image.
bbox : array_like
The bounding box in format (x, y, width, height).
patch_shape : Optional[array_like]
This parameter can be used to enforce a desired patch shape
(height, width). First, the `bbox` is adapted to the aspect ratio
of the patch shape, then it is clipped at the image boundaries.
If None, the shape is computed from :arg:`bbox`.
Returns
-------
ndarray | NoneType
An image patch showing the :arg:`bbox`, optionally reshaped to
:arg:`patch_shape`.
Returns None if the bounding box is empty or fully outside of the image
boundaries.
"""
bbox = np.array(bbox)
if patch_shape is not None:
# correct aspect ratio to patch shape
target_aspect = float(patch_shape[1]) / patch_shape[0]
new_width = target_aspect * bbox[3]
bbox[0] -= (new_width - bbox[2]) / 2
bbox[2] = new_width
# convert to top left, bottom right
bbox[2:] += bbox[:2]
bbox = bbox.astype(np.int32)
# clip at image boundaries
bbox[:2] = np.maximum(0, bbox[:2])
bbox[2:] = np.minimum(np.asarray(image.shape[:2][::-1]) - 1, bbox[2:])
if np.any(bbox[:2] >= bbox[2:]):
return None
sx, sy, ex, ey = bbox
image = image[sy:ey, sx:ex]
image = cv2.resize(image, tuple(patch_shape[::-1]))
return image
class ImageEncoder(object):
def __init__(self, checkpoint_filename, input_name="images",
output_name="features"):
self.session = tf.Session()
with tf.gfile.GFile(checkpoint_filename, "rb") as file_handle:
graph_def = tf.GraphDef()
graph_def.ParseFromString(file_handle.read())
tf.import_graph_def(graph_def, name="net")
self.input_var = tf.get_default_graph().get_tensor_by_name(
"%s:0" % input_name)
self.output_var = tf.get_default_graph().get_tensor_by_name(
"%s:0" % output_name)
assert len(self.output_var.get_shape()) == 2
assert len(self.input_var.get_shape()) == 4
self.feature_dim = self.output_var.get_shape().as_list()[-1]
self.image_shape = self.input_var.get_shape().as_list()[1:]
def __call__(self, data_x, batch_size=32):
out = np.zeros((len(data_x), self.feature_dim), np.float32)
_run_in_batches(
lambda x: self.session.run(self.output_var, feed_dict=x),
{self.input_var: data_x}, out, batch_size)
return out
def create_box_encoder(model_filename, input_name="images",
output_name="features", batch_size=32):
image_encoder = ImageEncoder(model_filename, input_name, output_name)
image_shape = image_encoder.image_shape
def encoder(image, boxes):
image_patches = []
for box in boxes:
patch = extract_image_patch(image, box, image_shape[:2])
if patch is None:
print("WARNING: Failed to extract image patch: %s." % str(box))
patch = np.random.uniform(
0., 255., image_shape).astype(np.uint8)
image_patches.append(patch)
image_patches = np.asarray(image_patches)
return image_encoder(image_patches, batch_size)
return encoder
def generate_detections(encoder, mot_dir, output_dir, detection_dir=None):
"""Generate detections with features.
Parameters
----------
encoder : Callable[image, ndarray] -> ndarray
The encoder function takes as input a BGR color image and a matrix of
bounding boxes in format `(x, y, w, h)` and returns a matrix of
corresponding feature vectors.
mot_dir : str
Path to the MOTChallenge directory (can be either train or test).
output_dir
Path to the output directory. Will be created if it does not exist.
detection_dir
Path to custom detections. The directory structure should be the default
MOTChallenge structure: `[sequence]/det/det.txt`. If None, uses the
standard MOTChallenge detections.
"""
if detection_dir is None:
detection_dir = mot_dir
try:
os.makedirs(output_dir)
except OSError as exception:
if exception.errno == errno.EEXIST and os.path.isdir(output_dir):
pass
else:
raise ValueError(
"Failed to created output directory '%s'" % output_dir)
for sequence in os.listdir(mot_dir):
print("Processing %s" % sequence)
sequence_dir = os.path.join(mot_dir, sequence)
image_dir = os.path.join(sequence_dir, "img1")
image_filenames = {
int(os.path.splitext(f)[0]): os.path.join(image_dir, f)
for f in os.listdir(image_dir)}
detection_file = os.path.join(
detection_dir, sequence, "det/det.txt")
detections_in = np.loadtxt(detection_file, delimiter=',')
detections_out = []
frame_indices = detections_in[:, 0].astype(np.int32)
min_frame_idx = frame_indices.astype(np.int32).min()
max_frame_idx = frame_indices.astype(np.int32).max()
for frame_idx in range(min_frame_idx, max_frame_idx + 1):
print("Frame %05d/%05d" % (frame_idx, max_frame_idx))
mask = frame_indices == frame_idx
rows = detections_in[mask]
if frame_idx not in image_filenames:
print("WARNING could not find image for frame %d" % frame_idx)
continue
bgr_image = cv2.imread(
image_filenames[frame_idx], cv2.IMREAD_COLOR)
features = encoder(bgr_image, rows[:, 2:6].copy())
detections_out += [np.r_[(row, feature)] for row, feature
in zip(rows, features)]
output_filename = os.path.join(output_dir, "%s.npy" % sequence)
np.save(
output_filename, np.asarray(detections_out), allow_pickle=False)
def parse_args():
"""Parse command line arguments.
"""
parser = argparse.ArgumentParser(description="Re-ID feature extractor")
parser.add_argument(
"--model",
default="resources/networks/mars-small128.pb",
help="Path to freezed inference graph protobuf.")
parser.add_argument(
"--mot_dir", help="Path to MOTChallenge directory (train or test)",
required=True)
parser.add_argument(
"--detection_dir", help="Path to custom detections. Defaults to "
"standard MOT detections Directory structure should be the default "
"MOTChallenge structure: [sequence]/det/det.txt", default=None)
parser.add_argument(
"--output_dir", help="Output directory. Will be created if it does not"
" exist.", default="detections")
return parser.parse_args()
def main():
args = parse_args()
encoder = create_box_encoder(args.model, batch_size=32)
generate_detections(encoder, args.mot_dir, args.output_dir,
args.detection_dir)
if __name__ == "__main__":
main() |