Manh Ho Dinh
Update app.py
a724d88 verified
raw
history blame
5.88 kB
import os
import gradio as gr
import cv2
import pandas as pd
import random
from datetime import datetime
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from ultralytics import YOLO
from tracker import Tracker
from utils import ID2LABEL, MODEL_PATH, AUTHEN_ACCOUNT, compute_color_for_labels
cred = credentials.Certificate(AUTHEN_ACCOUNT)
firebase_admin.initialize_app(cred)
db = firestore.client()
colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
for j in range(10)]
detection_threshold = 0.1
model = YOLO(MODEL_PATH)
def addToDatabase(ss_id, obj_ids):
try:
new_doc = db.collection("TrafficData").document()
print(new_doc.id)
data = {
"SS_ID": ss_id,
"TF_COUNT_CAR": len(obj_ids['car']),
"TF_COUNT_MOTOBIKE": len(obj_ids['bicycle']) + len(obj_ids['motocycle']),
"TF_COUNT_OTHERS": len(obj_ids['bus']) + len(obj_ids['truck']) + len(obj_ids['other']),
"TF_ID": new_doc.id,
"TF_TIME": datetime.utcnow()
}
try:
db.collection("TrafficData").document(new_doc.id).set(data)
print("Sucessfully saved to database")
except:
print("Can't upload a new data")
except:
print("Can't create a new data")
def traffic_counting(video):
obj_ids = {"person": [],
"bicycle": [],
"car": [],
"motocycle": [],
"bus": [],
"truck": [],
"other": []}
cap = cv2.VideoCapture(video)
ret, frame = cap.read()
tracker = Tracker()
while ret:
results = model.predict(frame)
for result in results:
detections = []
for r in result.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = r
x1 = int(x1)
x2 = int(x2)
y1 = int(y1)
y2 = int(y2)
class_id = int(class_id)
if score > detection_threshold:
detections.append([x1, y1, x2, y2, class_id, score])
tracker.update(frame, detections)
for track in tracker.tracks:
bbox = track.bbox
x1, y1, x2, y2 = bbox
track_id = track.track_id
class_id = track.class_id
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (compute_color_for_labels(class_id)), 3)
label_name = ID2LABEL[class_id] if class_id in ID2LABEL.keys() else "other"
if track_id not in obj_ids[label_name]:
obj_ids[label_name].append(track_id)
cv2.putText(frame,f"{label_name}-{track_id}",
(int(x1) + 5, int(y1) - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA )
# Count each type of traffic
output_data = {key: len(value) for key, value in obj_ids.items()}
df = pd.DataFrame(list(output_data.items()), columns=['Type', 'Number'])
yield frame, df
ret, frame = cap.read()
cap.release()
cv2.destroyAllWindows()
video_path = video.replace("\\", "/")
# addToDatabase(video_path.split("/")[-1][:-4], obj_ids)
# input_video = gr.Video(label="Input Video")
# output_video = gr.outputs.Video(label="Processing Video")
# output_data = gr.Dataframe(interactive=False, label="Traffic's Frequency")
# demo = gr.Interface(traffic_counting,
# inputs=input_video,
# outputs=[output_video, output_data],
# examples=[os.path.join('video', x) for x in os.listdir('video') if x != ".gitkeep"],
# allow_flagging='never'
# )
def traffic_detection(image):
results = model.predict(image)
detections = []
obj_ids = {"person": [],
"bicycle": [],
"car": [],
"motocycle": [],
"bus": [],
"truck": [],
"other": []}
for result in results:
for r in result.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = r
x1 = int(x1)
x2 = int(x2)
y1 = int(y1)
y2 = int(y2)
class_id = int(class_id)
if score > detection_threshold:
detections.append([x1, y1, x2, y2, class_id, score])
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (compute_color_for_labels(class_id)), 1)
label_name = ID2LABEL[class_id] if class_id in ID2LABEL.keys() else "other"
cv2.putText(image,f"{label_name}",
(int(x1) + 5, int(y1) - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.3,compute_color_for_labels(class_id), 1, cv2.LINE_AA )
# Count each type of traffic
output_data = {key: len(value) for key, value in obj_ids.items()}
df = pd.DataFrame(list(output_data.items()), columns=['Type', 'Number'])
yield image, df
# Input is a image
input_image = gr.Image(label="Input Image")
output_image = gr.Image(type="filepath", label="Processing Image")
output_data = gr.Dataframe(interactive=False, label="Traffic's Frequency")
demo = gr.Interface(traffic_detection,
inputs=input_image,
outputs=[output_image, output_data],
examples=[os.path.join('image', x) for x in os.listdir('image') if x != ".gitkeep"],
allow_flagging='never'
)
if __name__ == "__main__":
demo.queue()
demo.launch(share= False)