import os import random import cv2 from ultralytics import YOLO from tracker import Tracker id2label = {0: "person", 1: "bicycle", 2:"car", 3:"motocycle", 5:"bus", 7:"truck"} palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) # object_counter = {"person": 0, "car": 0, "motobike": 0, "bus": 0, "truck": 0, "other": 0} object_ids = {"person": [], "bicycle": [], "car": [], "motocycle": [], "bus": [], "truck": [], "other": []} video_path = os.path.join('.', 'video', 'NgaTu_01.mp4') # video_out_path = os.path.join('.', 'out.mp4') cap = cv2.VideoCapture(video_path) ret, frame = cap.read() cap_out = cv2.VideoWriter('out.avi', cv2.VideoWriter_fourcc(*'MJPG'), cap.get(cv2.CAP_PROP_FPS), (frame.shape[1], frame.shape[0])) model = YOLO('model_data/yolov8m.pt') tracker = Tracker() colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for j in range(10)] detection_threshold = 0.7 def compute_color_for_labels(label): if label == 0: # person color = (85, 45, 255) elif label == 2: # Car color = (222, 82, 175) elif label == 3: # Motobike color = (0, 204, 255) elif label == 5: # Bus color = (0, 149, 255) else: color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette] return tuple(color) while ret: results = model.predict(frame) for result in results: detections = [] for r in result.boxes.data.tolist(): x1, y1, x2, y2, score, class_id = r x1 = int(x1) x2 = int(x2) y1 = int(y1) y2 = int(y2) class_id = int(class_id) if score > detection_threshold: detections.append([x1, y1, x2, y2, class_id, score]) tracker.update(frame, detections) for track in tracker.tracks: bbox = track.bbox x1, y1, x2, y2 = bbox track_id = track.track_id class_id = track.class_id cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (compute_color_for_labels(class_id)), 3) label_name = id2label[class_id] if class_id in id2label.keys() else "other" if track_id not in object_ids[label_name]: object_ids[label_name].append(track_id) cv2.putText(frame,f"{label_name}-{track_id}", (int(x1) + 5, int(y1) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA ) cap_out.write(frame) cv2.imshow('frame',frame) cv2.waitKey(2) ret, frame = cap.read() cap.release() cv2.destroyAllWindows() print(object_ids)