Spaces:
Sleeping
Sleeping
File size: 5,452 Bytes
0e590dc ddb2631 0e590dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import supervision as sv
from ultralytics import YOLO
import os #added for cache_examples
from PIL import Image, ImageColor
import numpy as np
def load_model(img):
# Load model, get results and return detections/labels
model = YOLO('yolov8s-seg.pt')
result = model(img, verbose=False, imgsz=1280)[0]
detections = sv.Detections.from_ultralytics(result)
labels = [
f"{model.model.names[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
return detections, labels
def calculate_crop_dim(a,b):
#Calculates the crop dimensions of the image resultant
if a>b:
width= a
height = a
else:
width = b
height = b
return width, height
def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel):
"""
Function that changes the color of annotators
Args:
annotators: Icon whose color needs to be changed.
color: Chosen color with which to edit the input icon in Hex.
img: Input image is numpy matrix in BGR.
Returns:
annotators: annotated image
"""
img = img[...,::-1].copy() # BGR to RGB using numpy
detections, labels = load_model(img)
if "Blur" in annotators:
# Apply Blur
blur_annotator = sv.BlurAnnotator()
img = blur_annotator.annotate(img, detections=detections)
if "BoundingBox" in annotators:
# Draw Bounding box
box_annotator = sv.BoundingBoxAnnotator(sv.Color.from_hex(str(colorbb)))
img = box_annotator.annotate(img, detections=detections)
if "Mask" in annotators:
# Draw Mask
mask_annotator = sv.MaskAnnotator(sv.Color.from_hex(str(colormask)))
img = mask_annotator.annotate(img, detections=detections)
if "Ellipse" in annotators:
# Draw ellipse
ellipse_annotator = sv.EllipseAnnotator(sv.Color.from_hex(str(colorellipse)))
img = ellipse_annotator.annotate(img, detections=detections)
if "BoxCorner" in annotators:
# Draw Box corner
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
img = corner_annotator.annotate(img, detections=detections)
if "Circle" in annotators:
# Draw circle
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
img = circle_annotator.annotate(img, detections=detections)
if "Label" in annotators:
# Draw Label
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
img = label_annotator.annotate(img, detections=detections, labels=labels)
#crop image for the largest possible square
res_img = Image.fromarray(img)
print(type(res_img))
x=0
y=0
print("size of the pil im=", res_img.size)
(v1,v2) = res_img.size
width, height = calculate_crop_dim(v1, v2)
print(width, height)
my_img = np.array(res_img)
crop_img = my_img[y:y+height, x:x+width]
print(type(crop_img))
return crop_img[...,::-1].copy() # BGR to RGB using numpy
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.purple)
.set(
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_700",
checkbox_label_background_fill_selected="*primary_600",
checkbox_background_color_selected="*primary_400",
)) as demo:
gr.Markdown("""# Image Annotator""")
annotators = gr.CheckboxGroup(choices=["BoundingBox", "Mask", "Ellipse", "BoxCorner", "Circle", "Label", "Blur"], value=["BoundingBox", "Mask"], label="Select Annotators:")
with gr.Accordion("**Color Picker**"):
with gr.Row():
with gr.Column():
colorbb = gr.ColorPicker(value="#A351FB",label="BoundingBox")
with gr.Column():
colormask = gr.ColorPicker(value="#A351FB",label="Mask")
with gr.Column():
colorellipse = gr.ColorPicker(value="#A351FB",label="Ellipse")
with gr.Column():
colorbc = gr.ColorPicker(value="#A351FB",label="BoxCorner")
with gr.Column():
colorcir = gr.ColorPicker(value="#A351FB",label="Circle")
with gr.Column():
colorlabel = gr.ColorPicker(value="#A351FB",label="Label")
with gr.Row():
with gr.Column():
with gr.Tab("Input image"):
image_input = gr.Image(type="numpy", show_label=False)
with gr.Column():
with gr.Tab("Result image"):
image_output = gr.Image(type="numpy", show_label=False)
image_button = gr.Button(value="Annotate it!", variant="primary")
image_button.click(annotator, inputs=[image_input,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel], outputs=image_output)
gr.Markdown("## Image Examples")
gr.Examples(
examples=[os.path.join(os.path.abspath(''), "image/city.jpg"),
os.path.join(os.path.abspath(''), "image/household.jpg"),
os.path.join(os.path.abspath(''), "image/industry.jpg"),
os.path.join(os.path.abspath(''), "image/retail.jpg"),
os.path.join(os.path.abspath(''), "image/aerodefence.jpg")],
inputs=image_input,
outputs=image_output,
fn=annotator,
cache_examples=False,
)
demo.launch(debug=False) |