File size: 3,353 Bytes
5248bb3
 
 
 
 
1343b02
5248bb3
 
 
 
 
 
 
 
 
 
 
38e13f3
5248bb3
f958fdb
1343b02
 
 
 
 
f62d772
5248bb3
f62d772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5248bb3
f62d772
 
 
5248bb3
f62d772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5248bb3
1343b02
 
f62d772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5248bb3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import json
import pandas as pd
import traceback
import streamlit as st
from src.mcqgenerator.utilis import read_file, get_table_data
from src.mcqgenerator.logger import logging
from src.mcqgenerator.mcqgenerator import generate_evaluate_chain
from langchain_community.callbacks import get_openai_callback
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains import SequentialChain

with open('Response.json', 'r') as file:
    RESPONSE_JSON = json.load(file)

st.title("MCQs Creator Application")

with st.form("user_inputs"):
    uploader_file = st.file_uploader("Upload a PDF or Txt file")
    mcq_count = st.text_input("No. of MCQS")
    subject = st.text_input("Insert subject", max_chars=20)
    tone = st.text_input("Complexity Level of Questions", max_chars=20, placeholder="Simple")
    button = st.form_submit_button("Create MCQs")
    download()

if button and uploaded_file is not None and mcq_count and subject and tone:
        with st.spinner("loading..."):
            try:
                text=read_file(uploaded_file)
                #Count tokens and the cost of API call
                with get_openai_callback() as cb:
                    response=generate_evaluate_chain(
                        {
                        "text": text,
                        "number": mcq_count,
                        "subject":subject,
                        "tone": tone,
                        "response_json": json.dumps(RESPONSE_JSON)
                            }
                    )
                #st.write(response)

            except Exception as e:
                traceback.print_exception(type(e), e, e.__traceback__)
                st.error("Error")

            else:
                print(f"Total Tokens:{cb.total_tokens}")
                print(f"Prompt Tokens:{cb.prompt_tokens}")
                print(f"Completion Tokens:{cb.completion_tokens}")
                print(f"Total Cost:{cb.total_cost}")
                if isinstance(response, dict):
                    #Extract the quiz data from the response
                    quiz=response.get("quiz", None)
                    if quiz is not None:
                        table_data=get_table_data(quiz)
                        if table_data is not None:
                            df=pd.DataFrame(table_data)
                            df.index=df.index+1
                            st.table(df)
                            #Display the review in atext box as well
                            st.text_area(label="Review", value=response["review"])
                        else:
                            st.error("Error in the table data")

                else:
                    st.write(response)
                    
def download():
    if button:
        csv_filename = "generated_mcqs.csv"
        pdf_filename = "generated_mcqs.pdf"
    
        csv = st.download_button(
            label="Download as CSV",
            data=df.to_csv(index=False).encode("utf-8"),
            file_name=csv_filename,
            key="csv-download",
        )
    
        pdf = st.download_button(
            label="Download as PDF",
            data=df.to_html().encode("utf-8"),
            file_name=pdf_filename,
            key="pdf-download",
        )