Spaces:
Sleeping
Sleeping
import os | |
import json | |
import pandas as pd | |
import traceback | |
import streamlit as st | |
from src.mcqgenerator.utilis import read_file, get_table_data | |
from src.mcqgenerator.logger import logging | |
from src.mcqgenerator.mcqgenerator import generate_evaluate_chain | |
from langchain_community.callbacks import get_openai_callback | |
from langchain_openai import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.chains import SequentialChain | |
from weasyprint import HTML | |
with open('Response.json', 'r') as file: | |
RESPONSE_JSON = json.load(file) | |
st.title("MCQs Creator Application") | |
with st.form("user_inputs"): | |
uploader_file = st.file_uploader("Upload a PDF or Txt file") | |
mcq_count = st.text_input("No. of MCQS") | |
subject = st.text_input("Insert subject", max_chars=20) | |
tone = st.text_input("Complexity Level of Questions", max_chars=20, placeholder="Simple") | |
button = st.form_submit_button("Create MCQs") | |
df = None # Declare df at a broader scope | |
if button and uploader_file is not None and mcq_count and subject and tone: | |
with st.spinner("loading..."): | |
try: | |
text = read_file(uploader_file) | |
# Count tokens and the cost of the API call | |
with get_openai_callback() as cb: | |
response = generate_evaluate_chain( | |
{ | |
"text": text, | |
"number": mcq_count, | |
"subject": subject, | |
"tone": tone, | |
"response_json": json.dumps(RESPONSE_JSON) | |
} | |
) | |
except Exception as e: | |
traceback.print_exception(type(e), e, e.__traceback__) | |
st.error("Error") | |
else: | |
print(f"Total Tokens:{cb.total_tokens}") | |
print(f"Prompt Tokens:{cb.prompt_tokens}") | |
print(f"Completion Tokens:{cb.completion_tokens}") | |
print(f"Total Cost:{cb.total_cost}") | |
if isinstance(response, dict): | |
# Extract the quiz data from the response | |
quiz = response.get("quiz", None) | |
if quiz is not None: | |
table_data = get_table_data(quiz) | |
if table_data is not None: | |
df = pd.DataFrame(table_data) | |
df.index = df.index + 1 | |
st.table(df) | |
# Display the review in a text box as well | |
st.text_area(label="Review", value=response["review"]) | |
# Call the download function | |
else: | |
st.error("Error in the table data") | |
else: | |
st.write(response) | |
def download(df): | |
col1, col2 = st.columns(2) | |
html_content = df.to_html(index=False) | |
pdf_path = "generated_mcqs.pdf" | |
if button: | |
# Download CSV | |
col1.download_button( | |
label="Download CSV", | |
data=df.to_csv(index=False).encode("utf-8"), | |
file_name="generated_mcqs.csv", | |
key="csv-download", | |
help="Click to download as CSV", | |
) | |
# Now you can use df outside the form if needed | |
if df is not None: | |
download(df) | |