import os import json import pandas as pd import traceback import streamlit as st from dotenv import load_dotenv from src.mcqgenerator.utilis import read_file,get_table_data from src.mcqgenerator.logger import logging from src.mcqgenerator.mcqgenerator import generate_evaluate_chain from langchain_community.callbacks import get_openai_callback from langchain_openai import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.chains import SequentialChain with open('Response.json', 'r') as file: RESPONSE_JSON = json.load(file) st.title("MCQs Creator Application with Langchain") with st.form("user_inputs"): uploader_file=st.file_uploader("Upload a PDF or Txt file") mcq_count=st.text_input("No .of MCQS") subject=st.text_input("Insert subject", max_chars=20) tone=st.text_input("Complexity Level of Questions",max_chars=20, placeholder="Simple") button=st.form_submit_button("Create MCQs") if button and uploader_file is not None and mcq_count and subject and tone: with st.spinner("Loading...."): try: text=read_file(uploader_file) with get_openai_callback() as cb: response=generate_evaluate_chain( { "text": text, "number": mcq_count, "subject":subject, "tone": tone, "response_json": json.dumps(RESPONSE_JSON) } ) except Exception as e: traceback.print_exception(type(e), e,e.__traceback__) st.error("ERROR") else: print(f"Total Tokens:{cb.total_tokens}") print(f"Prompt Tokens:{cb.prompt_tokens}") print(f"Completion Tokens:{cb.completion_tokens}") print(f"Total Cost:{cb.total_cost}") if isinstance(response,dict): quiz=response.get("quiz",None) if quiz is not None: table_data=get_table_data(quiz) if table_data is not None: df=pd.DataFrame(table_data) df.index=df.index+1 st.table(df) st.text_area(label="Review",value=response["review"]) else: st.error("Error in the table date") else: st.write(response)