Spaces:
Runtime error
Runtime error
import importlib | |
import math | |
import os | |
import random | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.utils import make_grid | |
from transformers import PretrainedConfig | |
def seed_everything(seed): | |
os.environ["PL_GLOBAL_SEED"] = str(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def is_torch2_available(): | |
return hasattr(F, "scaled_dot_product_attention") | |
def instantiate_from_config(config): | |
if "target" not in config: | |
if config == '__is_first_stage__' or config == "__is_unconditional__": | |
return None | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", {})) | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def drop_seq_token(seq, drop_rate=0.5): | |
idx = torch.randperm(seq.size(1)) | |
num_keep_tokens = int(len(idx) * (1 - drop_rate)) | |
idx = idx[:num_keep_tokens] | |
seq = seq[:, idx] | |
return seq | |
def import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "CLIPTextModelWithProjection": # noqa RET505 | |
from transformers import CLIPTextModelWithProjection | |
return CLIPTextModelWithProjection | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def resize_numpy_image_long(image, resize_long_edge=768): | |
h, w = image.shape[:2] | |
if max(h, w) <= resize_long_edge: | |
return image | |
k = resize_long_edge / max(h, w) | |
h = int(h * k) | |
w = int(w * k) | |
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) | |
return image | |
# from basicsr | |
def img2tensor(imgs, bgr2rgb=True, float32=True): | |
"""Numpy array to tensor. | |
Args: | |
imgs (list[ndarray] | ndarray): Input images. | |
bgr2rgb (bool): Whether to change bgr to rgb. | |
float32 (bool): Whether to change to float32. | |
Returns: | |
list[tensor] | tensor: Tensor images. If returned results only have | |
one element, just return tensor. | |
""" | |
def _totensor(img, bgr2rgb, float32): | |
if img.shape[2] == 3 and bgr2rgb: | |
if img.dtype == 'float64': | |
img = img.astype('float32') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = torch.from_numpy(img.transpose(2, 0, 1)) | |
if float32: | |
img = img.float() | |
return img | |
if isinstance(imgs, list): | |
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |
return _totensor(imgs, bgr2rgb, float32) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
"""Convert torch Tensors into image numpy arrays. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
tensor (Tensor or list[Tensor]): Accept shapes: | |
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); | |
2) 3D Tensor of shape (3/1 x H x W); | |
3) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
rgb2bgr (bool): Whether to change rgb to bgr. | |
out_type (numpy type): output types. If ``np.uint8``, transform outputs | |
to uint8 type with range [0, 255]; otherwise, float type with | |
range [0, 1]. Default: ``np.uint8``. | |
min_max (tuple[int]): min and max values for clamp. | |
Returns: | |
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of | |
shape (H x W). The channel order is BGR. | |
""" | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
if torch.is_tensor(tensor): | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1: | |
result = result[0] | |
return result | |