import importlib import math import os import random import cv2 import numpy as np import torch import torch.nn.functional as F from torchvision.utils import make_grid from transformers import PretrainedConfig def seed_everything(seed): os.environ["PL_GLOBAL_SEED"] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def is_torch2_available(): return hasattr(F, "scaled_dot_product_attention") def instantiate_from_config(config): if "target" not in config: if config == '__is_first_stage__' or config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", {})) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def drop_seq_token(seq, drop_rate=0.5): idx = torch.randperm(seq.size(1)) num_keep_tokens = int(len(idx) * (1 - drop_rate)) idx = idx[:num_keep_tokens] seq = seq[:, idx] return seq def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": # noqa RET505 from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def resize_numpy_image_long(image, resize_long_edge=768): h, w = image.shape[:2] if max(h, w) <= resize_long_edge: return image k = resize_long_edge / max(h, w) h = int(h * k) w = int(w * k) image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) return image # from basicsr def img2tensor(imgs, bgr2rgb=True, float32=True): """Numpy array to tensor. Args: imgs (list[ndarray] | ndarray): Input images. bgr2rgb (bool): Whether to change bgr to rgb. float32 (bool): Whether to change to float32. Returns: list[tensor] | tensor: Tensor images. If returned results only have one element, just return tensor. """ def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == 'float64': img = img.astype('float32') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] return _totensor(imgs, bgr2rgb, float32) def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to [min, max], values will be normalized to [0, 1]. Args: tensor (Tensor or list[Tensor]): Accept shapes: 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result