Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,43 @@
|
|
1 |
-
import gradio as gr
|
2 |
|
3 |
-
gr.load("models/ManishThota/InstructBlip-VQA").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
|
3 |
+
# gr.load("models/ManishThota/InstructBlip-VQA").launch()
|
4 |
+
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Initialize the model and processor
|
13 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
14 |
+
model = BlipForQuestionAnswering.from_pretrained("ManishThota/InstructBlip-VQA")
|
15 |
+
|
16 |
+
def predict_answer(image, question):
|
17 |
+
# Convert PIL image to RGB if not already
|
18 |
+
image = image.convert("RGB")
|
19 |
+
|
20 |
+
# Prepare inputs
|
21 |
+
encoding = processor(image, question, return_tensors="pt").to("cuda:0", torch.float16)
|
22 |
+
|
23 |
+
out = model.generate(**encoding)
|
24 |
+
generated_text = processor.decode(out[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
return generated_text
|
27 |
+
|
28 |
+
|
29 |
+
def gradio_predict(image, question):
|
30 |
+
answer = predict_answer(image, question)
|
31 |
+
return answer
|
32 |
+
|
33 |
+
# Define the Gradio interface
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=gradio_predict,
|
36 |
+
inputs=[gr.inputs.Image(), gr.inputs.Textbox(label="Question")],
|
37 |
+
outputs=gr.outputs.Textbox(label="Answer"),
|
38 |
+
title="Visual Question Answering",
|
39 |
+
description="This model answers questions based on the content of an image. Powered by BLIP.",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the app
|
43 |
+
iface.launch()
|