Spaces:
Sleeping
Sleeping
File size: 6,433 Bytes
022acf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import re
from typing import Dict, Tuple
from warnings import filterwarnings
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
from newsclassifier.config.config import Cfg, logger
from torch.utils.data import Dataset
from transformers import RobertaTokenizer
filterwarnings("ignore")
def load_dataset(filepath: str, print_i: int = 0) -> pd.DataFrame:
"""load data from source into a Pandas DataFrame.
Args:
filepath (str): file location.
print_i (int): Print number of instances.
Returns:
pd.DataFrame: Pandas DataFrame of the data.
"""
logger.info("Loading Data.")
df = pd.read_csv(filepath)
if print_i:
print(df.head(print_i), "\n")
return df
def prepare_data(df: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Separate headlines instance and feature selection.
Args:
df: original dataframe.
Returns:
df: new dataframe with appropriate features.
headlines_df: dataframe cintaining "headlines" category instances.
"""
logger.info("Preparing Data.")
try:
df = df[["Title", "Category"]]
df.rename(columns={"Title": "Text"}, inplace=True)
df, headlines_df = df[df["Category"] != "Headlines"].reset_index(drop=True), df[df["Category"] == "Headlines"].reset_index(drop=True)
except Exception as e:
logger.error(e)
return df, headlines_df
def clean_text(text: str) -> str:
"""Clean text (lower, puntuations removal, blank space removal)."""
# lower case the text
logger.info("Cleaning input text.")
text = text.lower() # necessary to do before as stopwords are in lower case
# remove stopwords
stp_pattern = re.compile(r"\b(" + r"|".join(Cfg.STOPWORDS) + r")\b\s*")
text = stp_pattern.sub("", text)
# custom cleaning
text = text.strip() # remove space at start or end if any
text = re.sub(" +", " ", text) # remove extra spaces
text = re.sub("[^A-Za-z0-9]+", " ", text) # remove characters that are not alphanumeric
return text
def preprocess(df: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame, Dict, Dict]:
"""Preprocess the data.
Args:
df: Dataframe on which the preprocessing steps need to be performed.
Returns:
df: Preprocessed Data.
class_to_index: class labels to indices mapping
class_to_index: indices to class labels mapping
"""
df, headlines_df = prepare_data(df)
cats = df["Category"].unique().tolist()
class_to_index = {tag: i for i, tag in enumerate(cats)}
index_to_class = {v: k for k, v in class_to_index.items()}
df["Text"] = df["Text"].apply(clean_text) # clean text
df = df[["Text", "Category"]]
try:
df["Category"] = df["Category"].map(class_to_index) # label encoding
except Exception as e:
logger.error(e)
return df, headlines_df, class_to_index, index_to_class
def data_split(df: pd.DataFrame, split_size: float = 0.2, stratify_on_target: bool = True, save_dfs: bool = False):
"""Split data into train and test sets.
Args:
df (pd.DataFrame): Data to be split.
split_size (float): train-test split ratio (test ratio).
stratify_on_target (bool): Whether to do stratify split on target.
target_sep (bool): Whether to do target setting for train and test sets.
save_dfs (bool): Whether to save dataset splits in artifacts.
Returns:
train-test splits (with/without target setting)
"""
logger.info("Splitting Data.")
try:
if stratify_on_target:
stra = df["Category"]
else:
stra = None
train, test = train_test_split(df, test_size=split_size, random_state=42, stratify=stra)
train_ds = pd.DataFrame(train, columns=df.columns)
test_ds = pd.DataFrame(test, columns=df.columns)
if save_dfs:
logger.info("Saving and storing data splits.")
os.makedirs(Cfg.preprocessed_data_path, exist_ok=True)
train.to_csv(os.path.join(Cfg.preprocessed_data_path, "train.csv"))
test.to_csv(os.path.join(Cfg.preprocessed_data_path, "test.csv"))
except Exception as e:
logger.error(e)
return train_ds, test_ds
def prepare_input(tokenizer: RobertaTokenizer, text: str) -> Dict:
"""Tokenize and prepare the input text using the provided tokenizer.
Args:
tokenizer (RobertaTokenizer): The Roberta tokenizer to encode the input.
text (str): The input text to be tokenized.
Returns:
inputs (dict): A dictionary containing the tokenized input with keys such as 'input_ids',
'attention_mask', etc.
"""
logger.info("Tokenizing input text.")
inputs = tokenizer.encode_plus(
text,
return_tensors=None,
add_special_tokens=Cfg.add_special_tokens,
max_length=Cfg.max_len,
pad_to_max_length=Cfg.pad_to_max_length,
truncation=Cfg.truncation,
)
for k, v in inputs.items():
inputs[k] = torch.tensor(v, dtype=torch.long)
return inputs
class NewsDataset(Dataset):
def __init__(self, ds):
self.texts = ds["Text"].values
self.labels = ds["Category"].values
def __len__(self):
return len(self.texts)
def __getitem__(self, item):
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
inputs = prepare_input(tokenizer, self.texts[item])
labels = torch.tensor(self.labels[item], dtype=torch.float)
return inputs, labels
def collate(inputs: Dict) -> Dict:
"""Collate and modify the input dictionary to have the same sequence length for a particular input batch.
Args:
inputs (dict): A dictionary containing input tensors with varying sequence lengths.
Returns:
modified_inputs (dict): A modified dictionary with input tensors trimmed to have the same sequence length.
"""
max_len = int(inputs["input_ids"].sum(axis=1).max())
for k, v in inputs.items():
inputs[k] = inputs[k][:, :max_len]
return inputs
if __name__ == "__main__":
df = load_dataset(Cfg.dataset_loc)
df, headlines_df, class_to_index, index_to_class = preprocess(df)
print(df)
print(class_to_index)
train_ds, val_ds = data_split(df, save_dfs=True)
dataset = NewsDataset(df)
print(dataset.__getitem__(0))
|