File size: 19,940 Bytes
022acf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
    <meta charset="utf-8" />
    <meta http-equiv="X-UA-Compatible" content="IE=edge" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
      <link rel="shortcut icon" href="../../img/favicon.ico" />
    <title>train - NewsClassifier Docs</title>
    <link rel="stylesheet" href="../../css/theme.css" />
    <link rel="stylesheet" href="../../css/theme_extra.css" />
        <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.8.0/styles/github.min.css" />
        <link href="../../assets/_mkdocstrings.css" rel="stylesheet" />
    
      <script>
        // Current page data
        var mkdocs_page_name = "train";
        var mkdocs_page_input_path = "newsclassifier\\train.md";
        var mkdocs_page_url = null;
      </script>
    
    <!--[if lt IE 9]>
      <script src="../../js/html5shiv.min.js"></script>
    <![endif]-->
      <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.8.0/highlight.min.js"></script>
      <script>hljs.highlightAll();</script> 
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <div class="wy-side-nav-search">
          <a href="../.." class="icon icon-home"> NewsClassifier Docs
        </a>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
              <ul>
                <li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
                </li>
              </ul>
              <p class="caption"><span class="caption-text">newsclassifier</span></p>
              <ul class="current">
                  <li class="toctree-l1"><a class="reference internal" href="../config/">config</a>
                  </li>
                  <li class="toctree-l1"><a class="reference internal" href="../data/">data</a>
                  </li>
                  <li class="toctree-l1"><a class="reference internal" href="../models/">models</a>
                  </li>
                  <li class="toctree-l1 current"><a class="reference internal current" href="./">train</a>
    <ul class="current">
    </ul>
                  </li>
                  <li class="toctree-l1"><a class="reference internal" href="../tune/">tune</a>
                  </li>
                  <li class="toctree-l1"><a class="reference internal" href="../inference/">inference</a>
                  </li>
                  <li class="toctree-l1"><a class="reference internal" href="../utils/">utils</a>
                  </li>
              </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
      <nav class="wy-nav-top" role="navigation" aria-label="Mobile navigation menu">
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../..">NewsClassifier Docs</a>
        
      </nav>
      <div class="wy-nav-content">
        <div class="rst-content"><div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../.." class="icon icon-home" aria-label="Docs"></a></li>
          <li class="breadcrumb-item">newsclassifier</li>
      <li class="breadcrumb-item active">train</li>
    <li class="wy-breadcrumbs-aside">
          <a href="https://github.com/ManishW315/NewsClassifier/edit/master/docs/newsclassifier/train.md" class="icon icon-github"> Edit on GitHub</a>
    </li>
  </ul>
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
            <div class="section" itemprop="articleBody">
              
                <div class="doc doc-object doc-module">



<a id="newsclassifier.train"></a>
  <div class="doc doc-contents first">

  

  <div class="doc doc-children">










<div class="doc doc-object doc-function">




<h2 id="newsclassifier.train.eval_step" class="doc doc-heading">
          <code class="highlight language-python"><span class="n">eval_step</span><span class="p">(</span><span class="n">val_loader</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">loss_fn</span><span class="p">,</span> <span class="n">epoch</span><span class="p">)</span></code>

</h2>


  <div class="doc doc-contents ">
  
      <p>Eval step.</p>

          <details class="quote">
            <summary> <code>newsclassifier\train.py</code></summary>
            <div class="highlight"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span><span class="normal">43</span>
<span class="normal">44</span>
<span class="normal">45</span>
<span class="normal">46</span>
<span class="normal">47</span>
<span class="normal">48</span>
<span class="normal">49</span>
<span class="normal">50</span>
<span class="normal">51</span>
<span class="normal">52</span>
<span class="normal">53</span>
<span class="normal">54</span>
<span class="normal">55</span>
<span class="normal">56</span>
<span class="normal">57</span>
<span class="normal">58</span>
<span class="normal">59</span>
<span class="normal">60</span>
<span class="normal">61</span>
<span class="normal">62</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span> <span class="nf">eval_step</span><span class="p">(</span><span class="n">val_loader</span><span class="p">:</span> <span class="n">DataLoader</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">loss_fn</span><span class="p">,</span> <span class="n">epoch</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]:</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Eval step.&quot;&quot;&quot;</span>
    <span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
    <span class="n">loss</span> <span class="o">=</span> <span class="mf">0.0</span>
    <span class="n">total_iterations</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">val_loader</span><span class="p">)</span>
    <span class="n">desc</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Validation - Epoch </span><span class="si">{</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="si">}</span><span class="s2">&quot;</span>
    <span class="n">y_trues</span><span class="p">,</span> <span class="n">y_preds</span> <span class="o">=</span> <span class="p">[],</span> <span class="p">[]</span>
    <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">inference_mode</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">step</span><span class="p">,</span> <span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">enumerate</span><span class="p">(</span><span class="n">val_loader</span><span class="p">),</span> <span class="n">total</span><span class="o">=</span><span class="n">total_iterations</span><span class="p">,</span> <span class="n">desc</span><span class="o">=</span><span class="n">desc</span><span class="p">):</span>
            <span class="n">inputs</span> <span class="o">=</span> <span class="n">collate</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">inputs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                <span class="n">inputs</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
            <span class="n">labels</span> <span class="o">=</span> <span class="n">labels</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
            <span class="n">y_pred</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
            <span class="n">targets</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">one_hot</span><span class="p">(</span><span class="n">labels</span><span class="o">.</span><span class="n">long</span><span class="p">(),</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>  <span class="c1"># one-hot (for loss_fn)</span>
            <span class="n">J</span> <span class="o">=</span> <span class="n">loss_fn</span><span class="p">(</span><span class="n">y_pred</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
            <span class="n">loss</span> <span class="o">+=</span> <span class="p">(</span><span class="n">J</span> <span class="o">-</span> <span class="n">loss</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">step</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
            <span class="n">y_trues</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">targets</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
            <span class="n">y_preds</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">y_pred</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
    <span class="k">return</span> <span class="n">loss</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">(</span><span class="n">y_trues</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">(</span><span class="n">y_preds</span><span class="p">)</span>
</code></pre></div></td></tr></table></div>
          </details>
  </div>

</div>


<div class="doc doc-object doc-function">




<h2 id="newsclassifier.train.train_step" class="doc doc-heading">
          <code class="highlight language-python"><span class="n">train_step</span><span class="p">(</span><span class="n">train_loader</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">loss_fn</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">,</span> <span class="n">epoch</span><span class="p">)</span></code>

</h2>


  <div class="doc doc-contents ">
  
      <p>Train step.</p>

          <details class="quote">
            <summary> <code>newsclassifier\train.py</code></summary>
            <div class="highlight"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span><span class="normal">22</span>
<span class="normal">23</span>
<span class="normal">24</span>
<span class="normal">25</span>
<span class="normal">26</span>
<span class="normal">27</span>
<span class="normal">28</span>
<span class="normal">29</span>
<span class="normal">30</span>
<span class="normal">31</span>
<span class="normal">32</span>
<span class="normal">33</span>
<span class="normal">34</span>
<span class="normal">35</span>
<span class="normal">36</span>
<span class="normal">37</span>
<span class="normal">38</span>
<span class="normal">39</span>
<span class="normal">40</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span> <span class="nf">train_step</span><span class="p">(</span><span class="n">train_loader</span><span class="p">:</span> <span class="n">DataLoader</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">loss_fn</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">,</span> <span class="n">epoch</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w">    </span><span class="sd">&quot;&quot;&quot;Train step.&quot;&quot;&quot;</span>
    <span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
    <span class="n">loss</span> <span class="o">=</span> <span class="mf">0.0</span>
    <span class="n">total_iterations</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">train_loader</span><span class="p">)</span>
    <span class="n">desc</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Training - Epoch </span><span class="si">{</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="si">}</span><span class="s2">&quot;</span>
    <span class="k">for</span> <span class="n">step</span><span class="p">,</span> <span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">enumerate</span><span class="p">(</span><span class="n">train_loader</span><span class="p">),</span> <span class="n">total</span><span class="o">=</span><span class="n">total_iterations</span><span class="p">,</span> <span class="n">desc</span><span class="o">=</span><span class="n">desc</span><span class="p">):</span>
        <span class="n">inputs</span> <span class="o">=</span> <span class="n">collate</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">inputs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
            <span class="n">inputs</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
        <span class="n">labels</span> <span class="o">=</span> <span class="n">labels</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
        <span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>  <span class="c1"># reset gradients</span>
        <span class="n">y_pred</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>  <span class="c1"># forward pass</span>
        <span class="n">targets</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">one_hot</span><span class="p">(</span><span class="n">labels</span><span class="o">.</span><span class="n">long</span><span class="p">(),</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>  <span class="c1"># one-hot (for loss_fn)</span>
        <span class="n">J</span> <span class="o">=</span> <span class="n">loss_fn</span><span class="p">(</span><span class="n">y_pred</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span>  <span class="c1"># define loss</span>
        <span class="n">J</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>  <span class="c1"># backward pass</span>
        <span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>  <span class="c1"># update weights</span>
        <span class="n">loss</span> <span class="o">+=</span> <span class="p">(</span><span class="n">J</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">()</span> <span class="o">-</span> <span class="n">loss</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">step</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>  <span class="c1"># cumulative loss</span>
    <span class="k">return</span> <span class="n">loss</span>
</code></pre></div></td></tr></table></div>
          </details>
  </div>

</div>



  </div>

  </div>

</div>
              
            </div>
          </div><footer>
    <div class="rst-footer-buttons" role="navigation" aria-label="Footer Navigation">
        <a href="../models/" class="btn btn-neutral float-left" title="models"><span class="icon icon-circle-arrow-left"></span> Previous</a>
        <a href="../tune/" class="btn btn-neutral float-right" title="tune">Next <span class="icon icon-circle-arrow-right"></span></a>
    </div>

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
          
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="Versions">
  <span class="rst-current-version" data-toggle="rst-current-version">
    
        <span>
          <a href="https://github.com/ManishW315/NewsClassifier" class="fa fa-github" style="color: #fcfcfc"> GitHub</a>
        </span>
    
    
      <span><a href="../models/" style="color: #fcfcfc">&laquo; Previous</a></span>
    
    
      <span><a href="../tune/" style="color: #fcfcfc">Next &raquo;</a></span>
    
  </span>
</div>
    <script src="../../js/jquery-3.6.0.min.js"></script>
    <script>var base_url = "../..";</script>
    <script src="../../js/theme_extra.js"></script>
    <script src="../../js/theme.js"></script>
    <script>
        jQuery(function () {
            SphinxRtdTheme.Navigation.enable(true);
        });
    </script>

</body>
</html>