Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import torch | |
from newsclassifier.config.config import Cfg, logger | |
from newsclassifier.data import clean_text, prepare_input | |
from newsclassifier.models import CustomModel | |
from transformers import RobertaTokenizer | |
def predict(text: str): | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
model = CustomModel(num_classes=7) | |
model.load_state_dict(torch.load(os.path.join(Cfg.artifacts_path, "model.pt"), map_location=torch.device("cpu"))) | |
index_to_class = Cfg.index_to_class | |
sample_input = prepare_input(tokenizer, text) | |
input_ids = torch.unsqueeze(sample_input["input_ids"], 0).to("cpu") | |
attention_masks = torch.unsqueeze(sample_input["attention_mask"], 0).to("cpu") | |
test_sample = dict(input_ids=input_ids, attention_mask=attention_masks) | |
with torch.no_grad(): | |
y_pred_test_sample = model.predict_proba(test_sample) | |
prediction = y_pred_test_sample[0] | |
return prediction | |
if __name__ == "__main__": | |
txt = clean_text("Funds punished for owning too few Nvidia") | |
pred_prob = predict(txt) | |
print(pred_prob) | |