Spaces:
Sleeping
Sleeping
import gc | |
import os | |
import time | |
from typing import Tuple | |
import numpy as np | |
from tqdm.auto import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import wandb | |
from newsclassifier.config.config import Cfg, logger | |
from newsclassifier.data import (NewsDataset, collate, data_split, | |
load_dataset, preprocess) | |
from newsclassifier.models import CustomModel | |
from torch.utils.data import DataLoader | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def train_step(train_loader: DataLoader, model, num_classes: int, loss_fn, optimizer, epoch: int) -> float: | |
"""Train step.""" | |
model.train() | |
loss = 0.0 | |
total_iterations = len(train_loader) | |
desc = f"Training - Epoch {epoch+1}" | |
for step, (inputs, labels) in tqdm(enumerate(train_loader), total=total_iterations, desc=desc): | |
inputs = collate(inputs) | |
for k, v in inputs.items(): | |
inputs[k] = v.to(device) | |
labels = labels.to(device) | |
optimizer.zero_grad() # reset gradients | |
y_pred = model(inputs) # forward pass | |
targets = F.one_hot(labels.long(), num_classes=num_classes).float() # one-hot (for loss_fn) | |
J = loss_fn(y_pred, targets) # define loss | |
J.backward() # backward pass | |
optimizer.step() # update weights | |
loss += (J.detach().item() - loss) / (step + 1) # cumulative loss | |
return loss | |
def eval_step(val_loader: DataLoader, model, num_classes: int, loss_fn, epoch: int) -> Tuple[float, np.ndarray, np.ndarray]: | |
"""Eval step.""" | |
model.eval() | |
loss = 0.0 | |
total_iterations = len(val_loader) | |
desc = f"Validation - Epoch {epoch+1}" | |
y_trues, y_preds = [], [] | |
with torch.inference_mode(): | |
for step, (inputs, labels) in tqdm(enumerate(val_loader), total=total_iterations, desc=desc): | |
inputs = collate(inputs) | |
for k, v in inputs.items(): | |
inputs[k] = v.to(device) | |
labels = labels.to(device) | |
y_pred = model(inputs) | |
targets = F.one_hot(labels.long(), num_classes=num_classes).float() # one-hot (for loss_fn) | |
J = loss_fn(y_pred, targets).item() | |
loss += (J - loss) / (step + 1) | |
y_trues.extend(targets.cpu().numpy()) | |
y_preds.extend(torch.argmax(y_pred, dim=1).cpu().numpy()) | |
return loss, np.vstack(y_trues), np.vstack(y_preds) | |
def train_loop(config=None): | |
# ==================================================== | |
# loader | |
# ==================================================== | |
config = dict( | |
batch_size=Cfg.batch_size, | |
num_classes=Cfg.num_classes, | |
epochs=Cfg.epochs, | |
dropout_pb=Cfg.dropout_pb, | |
learning_rate=Cfg.lr, | |
lr_reduce_factor=Cfg.lr_redfactor, | |
lr_reduce_patience=Cfg.lr_redpatience, | |
) | |
with wandb.init(project="NewsClassifier", config=config): | |
config = wandb.config | |
df = load_dataset(Cfg.dataset_loc) | |
ds, headlines_df, class_to_index, index_to_class = preprocess(df) | |
train_ds, val_ds = data_split(ds, test_size=Cfg.test_size) | |
logger.info("Preparing Data.") | |
train_dataset = NewsDataset(train_ds) | |
valid_dataset = NewsDataset(val_ds) | |
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) | |
valid_loader = DataLoader(valid_dataset, batch_size=config.batch_size, shuffle=False, num_workers=4, pin_memory=True, drop_last=False) | |
# ==================================================== | |
# model | |
# ==================================================== | |
logger.info("Creating Custom Model.") | |
num_classes = config.num_classes | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = CustomModel(num_classes=num_classes, dropout_pb=config.dropout_pb) | |
model.to(device) | |
# ==================================================== | |
# Training components | |
# ==================================================== | |
criterion = nn.BCEWithLogitsLoss() | |
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate) | |
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
optimizer, mode="min", factor=config.lr_reduce_factor, patience=config.lr_reduce_patience | |
) | |
# ==================================================== | |
# loop | |
# ==================================================== | |
wandb.watch(model, criterion, log="all", log_freq=10) | |
min_loss = np.inf | |
logger.info("Staring Training Loop.") | |
for epoch in range(config.epochs): | |
try: | |
start_time = time.time() | |
# Step | |
train_loss = train_step(train_loader, model, num_classes, criterion, optimizer, epoch) | |
val_loss, _, _ = eval_step(valid_loader, model, num_classes, criterion, epoch) | |
scheduler.step(val_loss) | |
# scoring | |
elapsed = time.time() - start_time | |
wandb.log({"epoch": epoch + 1, "train_loss": train_loss, "val_loss": val_loss}) | |
print(f"Epoch {epoch+1} - avg_train_loss: {train_loss:.4f} avg_val_loss: {val_loss:.4f} time: {elapsed:.0f}s") | |
if min_loss > val_loss: | |
min_loss = val_loss | |
print("Best Score : saving model.") | |
os.makedirs(Cfg.artifacts_path, exist_ok=True) | |
model.save(Cfg.artifacts_path) | |
print(f"\nSaved Best Model Score: {min_loss:.4f}\n\n") | |
except Exception as e: | |
logger.error(f"Epoch - {epoch+1}, {e}") | |
wandb.save(os.path.join(Cfg.artifacts_path, "model.pt")) | |
torch.cuda.empty_cache() | |
gc.collect() | |
if __name__ == "__main__": | |
train_loop() | |