import os import gradio as gr import torch from newsclassifier.config.config import Cfg, logger from newsclassifier.data import prepare_input from newsclassifier.models import CustomModel from transformers import RobertaTokenizer labels = list(Cfg.index_to_class.values()) # load and compile the model tokenizer = RobertaTokenizer.from_pretrained("roberta-base") model = CustomModel(num_classes=7) model.load_state_dict(torch.load(os.path.join(Cfg.artifacts_path, "model.pt"), map_location=torch.device("cpu"))) def prediction(text): sample_input = prepare_input(tokenizer, text) input_ids = torch.unsqueeze(sample_input["input_ids"], 0).to("cpu") attention_masks = torch.unsqueeze(sample_input["attention_mask"], 0).to("cpu") test_sample = dict(input_ids=input_ids, attention_mask=attention_masks) with torch.no_grad(): y_pred_test_sample = model.predict_proba(test_sample) pred_probs = y_pred_test_sample[0] return {labels[i]: float(pred_probs[i]) for i in range(len(labels))} title = "NewsClassifier" description = "Enter a news headline, and this app will classify it into one of the categories." instructions = "Type or paste a news headline in the textbox and press Enter." iface = gr.Interface( fn=prediction, inputs=gr.Textbox(), outputs=gr.Label(num_top_classes=7), title=title, description=description, examples=[ ["Global Smartphone Shipments Will Hit Lowest Point in a Decade, IDC Says"], ["John Wick's First Spinoff is the Rare Prequel That Justifies Its Existence"], ["Research provides a better understanding of how light stimulates the brain"], ["Lionel Messi scores free kick golazo for Argentina in World Cup qualifiers"], ], article=instructions, ) iface.launch(share=True)