Spaces:
Runtime error
Runtime error
File size: 2,210 Bytes
9e3ea07 c53513a b916cdf c53513a 9e3ea07 0a9fba8 a81da59 0a9fba8 c53513a a81da59 b916cdf a81da59 0a9fba8 a81da59 c53513a a81da59 0a9fba8 c53513a a061413 c53513a 609a4fb ca7a52b c53513a f381f25 36c21dd ca7a52b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from fastapi import FastAPI, Request
from pydantic import BaseModel
from huggingface_hub import InferenceClient
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class InputData(BaseModel):
input: str
temperature: float = 0.2
max_new_tokens: int = 30000
top_p: float = 0.95
repetition_penalty: float = 1.0
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
@app.post("/Genera")
def read_root(request: Request, input_data: InputData):
input_text = input_data.input
temperature = input_data.temperature
max_new_tokens = input_data.max_new_tokens
top_p = input_data.top_p
repetition_penalty = input_data.repetition_penalty
history = [] # Puoi definire la history se necessario
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
return {"response": generated_response}
@app.get("/")
def read_general():
return {"response": "Benvenuto. Per maggiori info vai a /docs"} # Restituisci la risposta generata come JSON
def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False)
return output
#stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=False, return_full_text=False)
# Accumula l'output in una lista
#output_list = []
#for response in stream:
# output_list.append(response.token.text)
#return iter(output_list) # Restituisci la lista come un iteratore |