Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, Request | |
from fastapi.middleware.cors import CORSMiddleware # Importa il middleware CORS | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
from datetime import datetime | |
from gradio_client import Client | |
import base64 | |
import requests | |
import os | |
import socket | |
import time | |
#--------------------------------------------------- Definizione Server FAST API ------------------------------------------------------ | |
app = FastAPI() | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
class InputData(BaseModel): | |
input: str | |
temperature: float = 0.2 | |
max_new_tokens: int = 30000 | |
top_p: float = 0.95 | |
repetition_penalty: float = 1.0 | |
class InputImage(BaseModel): | |
input: str | |
negativePrompt: str = '' | |
steps: int = 25 | |
cfg: int = 5 | |
seed: int = 453666937 | |
#--------------------------------------------------- Generazione TESTO ------------------------------------------------------ | |
def read_root(request: Request, input_data: InputData): | |
input_text = input_data.input | |
temperature = input_data.temperature | |
max_new_tokens = input_data.max_new_tokens | |
top_p = input_data.top_p | |
repetition_penalty = input_data.repetition_penalty | |
history = [] | |
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty) | |
return {"response": generated_response} | |
def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False) | |
return output | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") | |
prompt += f"[{now}] [INST] {message} [/INST]" | |
return prompt | |
#--------------------------------------------------- Generazione IMMAGINE ------------------------------------------------------ | |
def generate_image(request: Request, input_data: InputImage): | |
client = Client("https://openskyml-fast-sdxl-stable-diffusion-xl.hf.space/--replicas/545b5tw7n/") | |
max_attempts = 10 | |
attempt = 0 | |
while attempt < max_attempts: | |
try: | |
result = client.predict( | |
input_data.input, | |
input_data.negativePrompt, | |
input_data.steps, | |
input_data.cfg, | |
1024, | |
1024, | |
input_data.seed, | |
fn_index=0 | |
) | |
image_url = result | |
with open(image_url, 'rb') as img_file: | |
img_binary = img_file.read() | |
img_base64 = base64.b64encode(img_binary).decode('utf-8') | |
return {"response": img_base64} | |
except requests.exceptions.HTTPError as e: | |
if e.response.status_code == 500: | |
time.sleep(1) | |
attempt += 1 | |
if attempt < max_attempts: | |
continue | |
else: | |
return {"error": "Errore interno del server persistente"} | |
else: | |
return {"error": "Errore diverso da 500"} | |
return {"error": "Numero massimo di tentativi raggiunto"} | |
def read_general(): | |
return {"response": "Benvenuto. Per maggiori info: https://matteoscript-fastapi.hf.space/docs"} | |