from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware # Importa il middleware CORS from pydantic import BaseModel from huggingface_hub import InferenceClient from datetime import datetime from gradio_client import Client import base64 import requests import os import socket app = FastAPI() client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class InputData(BaseModel): input: str temperature: float = 0.2 max_new_tokens: int = 30000 top_p: float = 0.95 repetition_penalty: float = 1.0 class InputImage(BaseModel): input: str negativePrompt: str = '' steps: int = 25 cfg: int = 5 seed: int = 453666937 def format_prompt(message, history): prompt = "" #with open('Manuale.txt', 'r') as file: # manual_content = file.read() # prompt += f"Leggi questo manuale dopo ti farò delle domande: {manual_content}" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") prompt += f"[{now}] [INST] {message} [/INST]" return prompt @app.post("/Genera") def read_root(request: Request, input_data: InputData): input_text = input_data.input temperature = input_data.temperature max_new_tokens = input_data.max_new_tokens top_p = input_data.top_p repetition_penalty = input_data.repetition_penalty history = [] # Puoi definire la history se necessario generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty) return {"response": generated_response} @app.post("/Immagine") def generate_image(request: Request, input_data: InputImage): client = Client("https://openskyml-fast-sdxl-stable-diffusion-xl.hf.space/--replicas/545b5tw7n/") result = client.predict( input_data.input, input_data.negativePrompt, input_data.steps, input_data.cfg, 1024, 1024, input_data.seed, fn_index=0 ) image_url = result with open(image_url, 'rb') as img_file: img_binary = img_file.read() img_base64 = base64.b64encode(img_binary).decode('utf-8') return {"response": img_base64} @app.get("/") def read_general(): return {"response": "Benvenuto. Per maggiori info vai a /docs"} # Restituisci la risposta generata come JSON def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False) return output #stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=False, return_full_text=False) # Accumula l'output in una lista #output_list = [] #for response in stream: # output_list.append(response.token.text) #return iter(output_list) # Restituisci la lista come un iteratore