from fastapi import FastAPI, Request from pydantic import BaseModel from huggingface_hub import InferenceClient app = FastAPI() client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class InputData(BaseModel): input: str temperature: float = 0.2 max_new_tokens: int = 30000 top_p: float = 0.95 repetition_penalty: float = 1.0 def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt @app.post("/Genera") def read_root(request: Request, input_data: InputData): input_text = input_data.input temperature = input_data.temperature max_new_tokens = input_data.max_new_tokens top_p = input_data.top_p repetition_penalty = input_data.repetition_penalty history = [] # Puoi definire la history se necessario generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty) return {"response": generated_response} @app.get("/") def read_general(): return {"response": "Benvenuto. Per maggiori info vai a /docs"} # Restituisci la risposta generata come JSON def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False) return output #stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=False, return_full_text=False) # Accumula l'output in una lista #output_list = [] #for response in stream: # output_list.append(response.token.text) #return iter(output_list) # Restituisci la lista come un iteratore