Spaces:
Sleeping
Sleeping
File size: 2,770 Bytes
3a19267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
[paths]
train = null
dev = null
vectors = null
init_tok2vec = null
[system]
seed = 0
gpu_allocator = null
[nlp]
lang = "en"
pipeline = ["textcat_multilabel"]
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
vectors = {"@vectors":"spacy.Vectors.v1"}
[components]
[components.textcat_multilabel]
factory = "textcat_multilabel"
scorer = {"@scorers":"spacy.textcat_multilabel_scorer.v2"}
threshold = 0.5
[components.textcat_multilabel.model]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.textcat_multilabel.model.linear_model]
@architectures = "spacy.TextCatBOW.v3"
exclusive_classes = false
length = 262144
ngram_size = 1
no_output_layer = false
nO = null
[components.textcat_multilabel.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.textcat_multilabel.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 64
rows = [2000,2000,500,1000,500]
attrs = ["NORM","LOWER","PREFIX","SUFFIX","SHAPE"]
include_static_vectors = false
[components.textcat_multilabel.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 64
window_size = 1
maxout_pieces = 3
depth = 2
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null
[training]
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
annotating_components = []
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
before_to_disk = null
before_update = null
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001
[training.score_weights]
cats_score = 1.0
cats_score_desc = null
cats_micro_p = null
cats_micro_r = null
cats_micro_f = null
cats_macro_p = null
cats_macro_r = null
cats_macro_f = null
cats_macro_auc = null
cats_f_per_type = null
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer] |