File size: 12,981 Bytes
c0441e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Title and description of the project
title: "Citations of ECFR Banking Regulation in a spaCy pipeline."
description: "Custom text classification project for spaCy v3 adapted from the spaCy v3"

vars:
  lang: "en"
  train: corpus/train.spacy
  dev: corpus/dev.spacy
  version: "0.1.0"
  gpu_id: -1
  vectors_model: "en_core_web_lg"
  name: ecfr_ner
  prodigy:
    ner_labels: ecfr_initial_ner
    ner_manual_labels: ecfr_manual_ner
    senter_labels: ecfr_labeled_sents
    ner_labeled_dataset: ecfr_labeled_ner
  assets:
    ner_labels: assets/ecfr_ner_labels.jsonl
    senter_labels: assets/ecfr_senter_labels.jsonl
    ner_patterns: assets/patterns.jsonl
    corpus_labels: corpus/labels
    data_files: data
    trained_model: my_trained_model
    trained_model_textcat: my_trained_model/textcat_multilabel
    output_models: output
    python_code: python_Code

directories: [ "data", "python_Code"]

assets:
  - dest: "data/firstStep_file.jsonl"
    description: "JSONL file containing formatted data from the first step"
  - dest: "data/five_examples_annotated5.jsonl"
    description: "JSONL file containing five annotated examples"
  - dest: "data/goldenEval.jsonl"
    description: "JSONL file containing golden evaluation data"
  - dest: "data/thirdStep_file.jsonl"
    description: "JSONL file containing classified data from the third step"
  - dest: "data/train.jsonl"
    description: "JSONL file containing training data"
  - dest: "data/train200.jsonl"
    description: "JSONL file containing initial training data"
  - dest: "data/train4465.jsonl"
    description: "JSONL file containing formatted and labeled training data"
  - dest: "python_Code/finalStep-formatLabel.py"
    description: "Python script for formatting labeled data in the final step"
  - dest: "python_Code/firstStep-format.py"
    description: "Python script for formatting data in the first step"
  - dest: "python_Code/five_examples_annotated.ipynb"
    description: "Jupyter notebook containing five annotated examples"
  - dest: "python_Code/secondStep-score.py"
    description: "Python script for scoring data in the second step"
  - dest: "python_Code/thirdStep-label.py"
    description: "Python script for labeling data in the third step"
  - dest: "python_Code/train_eval_split.ipynb"
    description: "Jupyter notebook for training and evaluation data splitting"
  - dest: "data/firstStep_file.jsonl"
    description: "Python script for evaluating the trained model"
  - dest: "README.md"
    description: "Markdown file containing project documentation"

workflows:
  train:
    - preprocess
    - train-text-classification-model
    - classify-unlabeled-data
    - format-labeled-data
    # - review-evaluation-data
    # - export-reviewed-evaluation-data
    # - import-training-data
    # - import-golden-evaluation-data
    # - train-model-experiment1
    # - convert-data-to-spacy-format
  evaluate:
    - evaluate-model

commands:
  - name: "preprocess"
    help: |
      Execute the Python script `firstStep-format.py`, which performs the initial formatting of a dataset file for the first step of the project. This script extracts text and labels from a dataset file in JSONL format and writes them to a new JSONL file in a specific format.
      
      Usage:
      ```
      spacy project run preprocess
      ```

      Explanation:
      - The script `firstStep-format.py` reads data from the file specified in the `dataset_file` variable (`data/train200.jsonl` by default).
      - It extracts text and labels from each JSON object in the dataset file.
      - If both text and at least one label are available, it writes a new JSON object to the output file specified in the `output_file` variable (`data/firstStep_file.jsonl` by default) with the extracted text and label.
      - If either text or label is missing in a JSON object, a warning message is printed.
      - Upon completion, the script prints a message confirming the processing and the path to the output file.
    script:
      - "python3 python_Code/firstStep-format.py"

  - name: "train-text-classification-model"
    help: |
      Train the text classification model for the second step of the project using the `secondStep-score.py` script. This script loads a blank English spaCy model and adds a text classification pipeline to it. It then trains the model using the processed data from the first step.
      
      Usage:
      ```
      spacy project run train-text-classification-model
      ```

      Explanation:
      - The script `secondStep-score.py` loads a blank English spaCy model and adds a text classification pipeline to it.
      - It reads processed data from the file specified in the `processed_data_file` variable (`data/firstStep_file.jsonl` by default).
      - The processed data is converted to spaCy format for training the model.
      - The model is trained using the converted data for a specified number of iterations (`n_iter`).
      - Losses are printed for each iteration during training.
      - Upon completion, the trained model is saved to the specified output directory (`./my_trained_model` by default).
    script:
      - "python3 python_Code/secondStep-score.py"

  - name: "classify-unlabeled-data"
    help: |
      Classify the unlabeled data for the third step of the project using the `thirdStep-label.py` script. This script loads the trained spaCy model from the previous step and classifies each record in the unlabeled dataset.
      
      Usage:
      ```
      spacy project run classify-unlabeled-data
      ```

      Explanation:
      - The script `thirdStep-label.py` loads the trained spaCy model from the specified model directory (`./my_trained_model` by default).
      - It reads the unlabeled data from the file specified in the `unlabeled_data_file` variable (`data/train.jsonl` by default).
      - Each record in the unlabeled data is classified using the loaded model.
      - The predicted labels for each record are extracted and stored along with the text.
      - The classified data is optionally saved to a file specified in the `output_file` variable (`data/thirdStep_file.jsonl` by default).
    script:
      - "python3 python_Code/thirdStep-label.py"

  - name: "format-labeled-data"
    help: |
      Format the labeled data for the final step of the project using the `finalStep-formatLabel.py` script. This script processes the classified data from the third step and transforms it into a specific format, considering a threshold for label acceptance.
      
      Usage:
      ```
      spacy project run format-labeled-data
      ```

      Explanation:
      - The script `finalStep-formatLabel.py` reads classified data from the file specified in the `input_file` variable (`data/thirdStep_file.jsonl` by default).
      - For each record, it determines accepted categories based on a specified threshold.
      - It constructs an output record containing the text, predicted labels, accepted categories, answer (accept/reject), and options with meta information.
      - The transformed data is written to the file specified in the `output_file` variable (`data/train4465.jsonl` by default).
    script:
      - "python3 python_Code/finalStep-formatLabel.py"

  - name: "evaluate-model"
    help: |
      Evaluate the trained model using the evaluation data and print the metrics.

      Usage:
      ```
      spacy project run evaluate-model
      ```

      Explanation:
      - The script `evaluate_model.py` loads the trained model and evaluates it using the golden evaluation data.
      - It calculates evaluation metrics such as accuracy, precision, recall, and F1-score.
      - The metrics are printed to the console.
    script:
      - "python python_Code/evaluate_model.py"
      
  # - name: "review-evaluation-data"
  #   help: |
  #     Review the evaluation data in Prodigy and automatically accept annotations.
      
  #     Usage:
  #     ```
  #     spacy project run review-evaluation-data
  #     ```

  #     Explanation:
  #     - The command reviews the evaluation data in Prodigy.
  #     - It automatically accepts annotations made during the review process.
  #     - Only sessions allowed by the environment variable PRODIGY_ALLOWED_SESSIONS are permitted to review data. In this case, the session 'reviwer' is allowed.
  #   script:
  #     - "PRODIGY_ALLOWED_SESSIONS=reviwer python3 -m prodigy review project3eval-review project3eval --auto-accept"

  # - name: "export-reviewed-evaluation-data"
  #   help: |
  #     Export the reviewed evaluation data from Prodigy to a JSONL file named 'goldenEval.jsonl'.
      
  #     Usage:
  #     ```
  #     spacy project run export-reviewed-evaluation-data
  #     ```

  #     Explanation:
  #     - The command exports the reviewed evaluation data from Prodigy to a JSONL file.
  #     - The data is exported from the Prodigy database associated with the project named 'project3eval-review'.
  #     - The exported data is saved to the file 'goldenEval.jsonl'.
  #     - This command helps in preserving the reviewed annotations for further analysis or processing.
  #   script:
  #     - "prodigy db-out project3eval-review > goldenEval.jsonl"

  # - name: "import-training-data"
  #   help: |
  #     Import the training data into Prodigy from a JSONL file named 'train200.jsonl'.
      
  #     Usage:
  #     ```
  #     spacy project run import-training-data
  #     ```

  #     Explanation:
  #     - The command imports the training data into Prodigy from the specified JSONL file.
  #     - The data is imported into the Prodigy database associated with the project named 'prodigy3train'.
  #     - This command prepares the training data for annotation and model training in Prodigy.
  #   script:
  #     - "prodigy db-in prodigy3train train200.jsonl"

  # - name: "import-golden-evaluation-data"
  #   help: |
  #     Import the golden evaluation data into Prodigy from a JSONL file named 'goldeneval.jsonl'.
      
  #     Usage:
  #     ```
  #     spacy project run import-golden-evaluation-data
  #     ```

  #     Explanation:
  #     - The command imports the golden evaluation data into Prodigy from the specified JSONL file.
  #     - The data is imported into the Prodigy database associated with the project named 'golden3'.
  #     - This command prepares the golden evaluation data for further analysis and model evaluation in Prodigy.
  #   script:
  #     - "prodigy db-in golden3 goldeneval.jsonl"

  # - name: "train-model-experiment1"
  #   help: |
  #     Train a text classification model using Prodigy with the 'prodigy3train' dataset and evaluating on 'golden3'.
      
  #     Usage:
  #     ```
  #     spacy project run train-model-experiment1
  #     ```

  #     Explanation:
  #     - The command trains a text classification model using Prodigy.
  #     - It uses the 'prodigy3train' dataset for training and evaluates the model on the 'golden3' dataset.
  #     - The trained model is saved to the './output/experiment1' directory.
  #   script:
  #     - "python3 -m prodigy train --textcat-multilabel prodigy3train,eval:golden3 ./output/experiment1"

  # - name: "download-model"
  #   help: |
  #     Download the English language model 'en_core_web_lg' from spaCy.
      
  #     Usage:
  #     ```
  #     spacy project run download-model
  #     ```

  #     Explanation:
  #     - The command downloads the English language model 'en_core_web_lg' from spaCy.
  #     - This model is used as the base model for further data processing and training in the project.
  #   script:
  #     - "python3 -m spacy download en_core_web_lg"

  # - name: "convert-data-to-spacy-format"
  #   help: |
  #     Convert the annotated data from Prodigy to spaCy format using the 'prodigy3train' and 'golden3' datasets.
      
  #     Usage:
  #     ```
  #     spacy project run convert-data-to-spacy-format
  #     ```

  #     Explanation:
  #     - The command converts the annotated data from Prodigy to spaCy format.
  #     - It uses the 'prodigy3train' and 'golden3' datasets for conversion.
  #     - The converted data is saved to the './corpus' directory with the base model 'en_core_web_lg'.
  #   script:
  #     - "python3 -m prodigy data-to-spacy --textcat-multilabel prodigy3train,eval:golden3 ./corpus --base-model en_core_web_lg"

  # - name: "train-custom-model"
  #   help: |
  #     Train a custom text classification model using spaCy with the converted data in spaCy format.
      
  #     Usage:
  #     ```
  #     spacy project run train-custom-model
  #     ```

  #     Explanation:
  #     - The command trains a custom text classification model using spaCy.
  #     - It uses the converted data in spaCy format located in the './corpus' directory.
  #     - The model is trained using the configuration defined in 'corpus/config.cfg'.
  #   script:
  #     - "python -m spacy train corpus/config.cfg --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy"