Spaces:
Sleeping
Sleeping
File size: 12,981 Bytes
c0441e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Title and description of the project
title: "Citations of ECFR Banking Regulation in a spaCy pipeline."
description: "Custom text classification project for spaCy v3 adapted from the spaCy v3"
vars:
lang: "en"
train: corpus/train.spacy
dev: corpus/dev.spacy
version: "0.1.0"
gpu_id: -1
vectors_model: "en_core_web_lg"
name: ecfr_ner
prodigy:
ner_labels: ecfr_initial_ner
ner_manual_labels: ecfr_manual_ner
senter_labels: ecfr_labeled_sents
ner_labeled_dataset: ecfr_labeled_ner
assets:
ner_labels: assets/ecfr_ner_labels.jsonl
senter_labels: assets/ecfr_senter_labels.jsonl
ner_patterns: assets/patterns.jsonl
corpus_labels: corpus/labels
data_files: data
trained_model: my_trained_model
trained_model_textcat: my_trained_model/textcat_multilabel
output_models: output
python_code: python_Code
directories: [ "data", "python_Code"]
assets:
- dest: "data/firstStep_file.jsonl"
description: "JSONL file containing formatted data from the first step"
- dest: "data/five_examples_annotated5.jsonl"
description: "JSONL file containing five annotated examples"
- dest: "data/goldenEval.jsonl"
description: "JSONL file containing golden evaluation data"
- dest: "data/thirdStep_file.jsonl"
description: "JSONL file containing classified data from the third step"
- dest: "data/train.jsonl"
description: "JSONL file containing training data"
- dest: "data/train200.jsonl"
description: "JSONL file containing initial training data"
- dest: "data/train4465.jsonl"
description: "JSONL file containing formatted and labeled training data"
- dest: "python_Code/finalStep-formatLabel.py"
description: "Python script for formatting labeled data in the final step"
- dest: "python_Code/firstStep-format.py"
description: "Python script for formatting data in the first step"
- dest: "python_Code/five_examples_annotated.ipynb"
description: "Jupyter notebook containing five annotated examples"
- dest: "python_Code/secondStep-score.py"
description: "Python script for scoring data in the second step"
- dest: "python_Code/thirdStep-label.py"
description: "Python script for labeling data in the third step"
- dest: "python_Code/train_eval_split.ipynb"
description: "Jupyter notebook for training and evaluation data splitting"
- dest: "data/firstStep_file.jsonl"
description: "Python script for evaluating the trained model"
- dest: "README.md"
description: "Markdown file containing project documentation"
workflows:
train:
- preprocess
- train-text-classification-model
- classify-unlabeled-data
- format-labeled-data
# - review-evaluation-data
# - export-reviewed-evaluation-data
# - import-training-data
# - import-golden-evaluation-data
# - train-model-experiment1
# - convert-data-to-spacy-format
evaluate:
- evaluate-model
commands:
- name: "preprocess"
help: |
Execute the Python script `firstStep-format.py`, which performs the initial formatting of a dataset file for the first step of the project. This script extracts text and labels from a dataset file in JSONL format and writes them to a new JSONL file in a specific format.
Usage:
```
spacy project run preprocess
```
Explanation:
- The script `firstStep-format.py` reads data from the file specified in the `dataset_file` variable (`data/train200.jsonl` by default).
- It extracts text and labels from each JSON object in the dataset file.
- If both text and at least one label are available, it writes a new JSON object to the output file specified in the `output_file` variable (`data/firstStep_file.jsonl` by default) with the extracted text and label.
- If either text or label is missing in a JSON object, a warning message is printed.
- Upon completion, the script prints a message confirming the processing and the path to the output file.
script:
- "python3 python_Code/firstStep-format.py"
- name: "train-text-classification-model"
help: |
Train the text classification model for the second step of the project using the `secondStep-score.py` script. This script loads a blank English spaCy model and adds a text classification pipeline to it. It then trains the model using the processed data from the first step.
Usage:
```
spacy project run train-text-classification-model
```
Explanation:
- The script `secondStep-score.py` loads a blank English spaCy model and adds a text classification pipeline to it.
- It reads processed data from the file specified in the `processed_data_file` variable (`data/firstStep_file.jsonl` by default).
- The processed data is converted to spaCy format for training the model.
- The model is trained using the converted data for a specified number of iterations (`n_iter`).
- Losses are printed for each iteration during training.
- Upon completion, the trained model is saved to the specified output directory (`./my_trained_model` by default).
script:
- "python3 python_Code/secondStep-score.py"
- name: "classify-unlabeled-data"
help: |
Classify the unlabeled data for the third step of the project using the `thirdStep-label.py` script. This script loads the trained spaCy model from the previous step and classifies each record in the unlabeled dataset.
Usage:
```
spacy project run classify-unlabeled-data
```
Explanation:
- The script `thirdStep-label.py` loads the trained spaCy model from the specified model directory (`./my_trained_model` by default).
- It reads the unlabeled data from the file specified in the `unlabeled_data_file` variable (`data/train.jsonl` by default).
- Each record in the unlabeled data is classified using the loaded model.
- The predicted labels for each record are extracted and stored along with the text.
- The classified data is optionally saved to a file specified in the `output_file` variable (`data/thirdStep_file.jsonl` by default).
script:
- "python3 python_Code/thirdStep-label.py"
- name: "format-labeled-data"
help: |
Format the labeled data for the final step of the project using the `finalStep-formatLabel.py` script. This script processes the classified data from the third step and transforms it into a specific format, considering a threshold for label acceptance.
Usage:
```
spacy project run format-labeled-data
```
Explanation:
- The script `finalStep-formatLabel.py` reads classified data from the file specified in the `input_file` variable (`data/thirdStep_file.jsonl` by default).
- For each record, it determines accepted categories based on a specified threshold.
- It constructs an output record containing the text, predicted labels, accepted categories, answer (accept/reject), and options with meta information.
- The transformed data is written to the file specified in the `output_file` variable (`data/train4465.jsonl` by default).
script:
- "python3 python_Code/finalStep-formatLabel.py"
- name: "evaluate-model"
help: |
Evaluate the trained model using the evaluation data and print the metrics.
Usage:
```
spacy project run evaluate-model
```
Explanation:
- The script `evaluate_model.py` loads the trained model and evaluates it using the golden evaluation data.
- It calculates evaluation metrics such as accuracy, precision, recall, and F1-score.
- The metrics are printed to the console.
script:
- "python python_Code/evaluate_model.py"
# - name: "review-evaluation-data"
# help: |
# Review the evaluation data in Prodigy and automatically accept annotations.
# Usage:
# ```
# spacy project run review-evaluation-data
# ```
# Explanation:
# - The command reviews the evaluation data in Prodigy.
# - It automatically accepts annotations made during the review process.
# - Only sessions allowed by the environment variable PRODIGY_ALLOWED_SESSIONS are permitted to review data. In this case, the session 'reviwer' is allowed.
# script:
# - "PRODIGY_ALLOWED_SESSIONS=reviwer python3 -m prodigy review project3eval-review project3eval --auto-accept"
# - name: "export-reviewed-evaluation-data"
# help: |
# Export the reviewed evaluation data from Prodigy to a JSONL file named 'goldenEval.jsonl'.
# Usage:
# ```
# spacy project run export-reviewed-evaluation-data
# ```
# Explanation:
# - The command exports the reviewed evaluation data from Prodigy to a JSONL file.
# - The data is exported from the Prodigy database associated with the project named 'project3eval-review'.
# - The exported data is saved to the file 'goldenEval.jsonl'.
# - This command helps in preserving the reviewed annotations for further analysis or processing.
# script:
# - "prodigy db-out project3eval-review > goldenEval.jsonl"
# - name: "import-training-data"
# help: |
# Import the training data into Prodigy from a JSONL file named 'train200.jsonl'.
# Usage:
# ```
# spacy project run import-training-data
# ```
# Explanation:
# - The command imports the training data into Prodigy from the specified JSONL file.
# - The data is imported into the Prodigy database associated with the project named 'prodigy3train'.
# - This command prepares the training data for annotation and model training in Prodigy.
# script:
# - "prodigy db-in prodigy3train train200.jsonl"
# - name: "import-golden-evaluation-data"
# help: |
# Import the golden evaluation data into Prodigy from a JSONL file named 'goldeneval.jsonl'.
# Usage:
# ```
# spacy project run import-golden-evaluation-data
# ```
# Explanation:
# - The command imports the golden evaluation data into Prodigy from the specified JSONL file.
# - The data is imported into the Prodigy database associated with the project named 'golden3'.
# - This command prepares the golden evaluation data for further analysis and model evaluation in Prodigy.
# script:
# - "prodigy db-in golden3 goldeneval.jsonl"
# - name: "train-model-experiment1"
# help: |
# Train a text classification model using Prodigy with the 'prodigy3train' dataset and evaluating on 'golden3'.
# Usage:
# ```
# spacy project run train-model-experiment1
# ```
# Explanation:
# - The command trains a text classification model using Prodigy.
# - It uses the 'prodigy3train' dataset for training and evaluates the model on the 'golden3' dataset.
# - The trained model is saved to the './output/experiment1' directory.
# script:
# - "python3 -m prodigy train --textcat-multilabel prodigy3train,eval:golden3 ./output/experiment1"
# - name: "download-model"
# help: |
# Download the English language model 'en_core_web_lg' from spaCy.
# Usage:
# ```
# spacy project run download-model
# ```
# Explanation:
# - The command downloads the English language model 'en_core_web_lg' from spaCy.
# - This model is used as the base model for further data processing and training in the project.
# script:
# - "python3 -m spacy download en_core_web_lg"
# - name: "convert-data-to-spacy-format"
# help: |
# Convert the annotated data from Prodigy to spaCy format using the 'prodigy3train' and 'golden3' datasets.
# Usage:
# ```
# spacy project run convert-data-to-spacy-format
# ```
# Explanation:
# - The command converts the annotated data from Prodigy to spaCy format.
# - It uses the 'prodigy3train' and 'golden3' datasets for conversion.
# - The converted data is saved to the './corpus' directory with the base model 'en_core_web_lg'.
# script:
# - "python3 -m prodigy data-to-spacy --textcat-multilabel prodigy3train,eval:golden3 ./corpus --base-model en_core_web_lg"
# - name: "train-custom-model"
# help: |
# Train a custom text classification model using spaCy with the converted data in spaCy format.
# Usage:
# ```
# spacy project run train-custom-model
# ```
# Explanation:
# - The command trains a custom text classification model using spaCy.
# - It uses the converted data in spaCy format located in the './corpus' directory.
# - The model is trained using the configuration defined in 'corpus/config.cfg'.
# script:
# - "python -m spacy train corpus/config.cfg --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy"
|