Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spacy | |
from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score | |
# Load the trained spaCy model | |
model_path = "./my_trained_model" | |
nlp = spacy.load(model_path) | |
# Threshold for classification | |
threshold = 0.21 | |
# Function to classify text | |
def classify_text(text): | |
doc = nlp(text) | |
predicted_labels = doc.cats | |
return predicted_labels | |
# Function to evaluate the predicted labels for the input text | |
def evaluate_text(input_text): | |
# Get the predicted labels and probabilities for the input text | |
doc = nlp(input_text) | |
predicted_labels = doc.cats | |
# Assuming you have ground truth labels for the input text, you would compare the predicted labels with the ground truth labels here. | |
# For demonstration purposes, let's assume the ground truth labels are provided here. | |
ground_truth_labels = { | |
"CapitalRequirements": 0, | |
"ConsumerProtection": 1, | |
"RiskManagement": 0, | |
"ReportingAndCompliance": 1, | |
"CorporateGovernance": 0 | |
} | |
# Convert predicted and ground truth labels to lists | |
predicted_labels_list = [predicted_labels[label] for label in ground_truth_labels] | |
ground_truth_labels_list = [ground_truth_labels[label] for label in ground_truth_labels] | |
# Calculate evaluation metrics | |
accuracy = accuracy_score(ground_truth_labels_list, [1 if prob > threshold else 0 for prob in predicted_labels_list]) | |
precision = precision_score(ground_truth_labels_list, [1 if prob > threshold else 0 for prob in predicted_labels_list], average='weighted') | |
recall = recall_score(ground_truth_labels_list, [1 if prob > threshold else 0 for prob in predicted_labels_list], average='weighted') | |
f1 = f1_score(ground_truth_labels_list, [1 if prob > threshold else 0 for prob in predicted_labels_list], average='weighted') | |
# Additional classification report | |
report = classification_report(ground_truth_labels_list, [1 if prob > threshold else 0 for prob in predicted_labels_list]) | |
# # Construct output dictionary | |
# output_dict = { | |
# "PredictedLabels": predicted_labels, | |
# "EvaluationMetrics": { | |
# "Accuracy": accuracy, | |
# "Precision": precision, | |
# "Recall": recall, | |
# "F1-Score": f1, | |
# "ClassificationReport": report | |
# } | |
# } | |
return output_dict | |
# Gradio Interface | |
iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text") | |
iface.launch(share=True) | |