Spaces:
Sleeping
Sleeping
import spacy | |
import jsonlines | |
from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score | |
# Load the trained spaCy model | |
nlp = spacy.load("./my_trained_model") | |
# Load the golden evaluation data | |
golden_eval_data = [] | |
with jsonlines.open("data/goldenEval.jsonl") as reader: | |
for record in reader: | |
golden_eval_data.append(record) | |
# Predict labels for each record using your model | |
predicted_labels = [] | |
for record in golden_eval_data: | |
text = record["text"] | |
doc = nlp(text) | |
predicted_labels.append(doc.cats) | |
# Extract ground truth labels from the golden evaluation data | |
true_labels = [record["accept"] for record in golden_eval_data] | |
# Convert label format to match sklearn's classification report format | |
true_labels_flat = [label[0] if label else "reject" for label in true_labels] | |
predicted_labels_flat = [max(pred, key=pred.get) for pred in predicted_labels] | |
# Calculate evaluation metrics | |
accuracy = accuracy_score(true_labels_flat, predicted_labels_flat) | |
precision = precision_score(true_labels_flat, predicted_labels_flat, average='weighted') | |
recall = recall_score(true_labels_flat, predicted_labels_flat, average='weighted') | |
f1 = f1_score(true_labels_flat, predicted_labels_flat, average='weighted') | |
# Additional classification report | |
report = classification_report(true_labels_flat, predicted_labels_flat) | |
# Print or save the evaluation metrics | |
print("Evaluation Metrics:") | |
print(f"Accuracy: {accuracy}") | |
print(f"Precision: {precision}") | |
print(f"Recall: {recall}") | |
print(f"F1-Score: {f1}") | |
# Print or save the detailed classification report | |
print("Detailed Classification Report:") | |
print(report) | |