ManjinderUNCC commited on
Commit
60e1332
1 Parent(s): a987204

Update gradio_interface.py

Browse files
Files changed (1) hide show
  1. gradio_interface.py +11 -2
gradio_interface.py CHANGED
@@ -1,6 +1,5 @@
1
  import gradio as gr
2
  import spacy
3
- from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score
4
 
5
  # Load the trained spaCy model
6
  model_path = "./my_trained_model"
@@ -9,6 +8,15 @@ nlp = spacy.load(model_path)
9
  # Threshold for classification
10
  threshold = 0.21
11
 
 
 
 
 
 
 
 
 
 
12
  # Function to classify text
13
  def classify_text(text):
14
  doc = nlp(text)
@@ -21,7 +29,7 @@ def evaluate_text(input_text):
21
  doc = nlp(input_text)
22
  predicted_labels = doc.cats
23
 
24
- # Construct output dictionary with predicted labels and probabilities
25
  output_dict = {
26
  "PredictedLabels": {label: score for label, score in predicted_labels.items() if score > threshold}
27
  }
@@ -31,6 +39,7 @@ def evaluate_text(input_text):
31
  iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text")
32
  iface.launch(share=True)
33
 
 
34
  # import gradio as gr
35
  # import spacy
36
  # from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score
 
1
  import gradio as gr
2
  import spacy
 
3
 
4
  # Load the trained spaCy model
5
  model_path = "./my_trained_model"
 
8
  # Threshold for classification
9
  threshold = 0.21
10
 
11
+ # Ground truth labels
12
+ ground_truth_labels = {
13
+ "CapitalRequirements": 0,
14
+ "ConsumerProtection": 1,
15
+ "RiskManagement": 0,
16
+ "ReportingAndCompliance": 1,
17
+ "CorporateGovernance": 0
18
+ }
19
+
20
  # Function to classify text
21
  def classify_text(text):
22
  doc = nlp(text)
 
29
  doc = nlp(input_text)
30
  predicted_labels = doc.cats
31
 
32
+ # Construct output dictionary
33
  output_dict = {
34
  "PredictedLabels": {label: score for label, score in predicted_labels.items() if score > threshold}
35
  }
 
39
  iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text")
40
  iface.launch(share=True)
41
 
42
+
43
  # import gradio as gr
44
  # import spacy
45
  # from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score