ManjinderUNCC commited on
Commit
90df33c
·
verified ·
1 Parent(s): 26d0009

Update gradio_interface.py

Browse files
Files changed (1) hide show
  1. gradio_interface.py +2 -18
gradio_interface.py CHANGED
@@ -5,18 +5,6 @@ import spacy
5
  model_path = "./my_trained_model"
6
  nlp = spacy.load(model_path)
7
 
8
- # Threshold for classification
9
- threshold = 0.21
10
-
11
- # Ground truth labels
12
- ground_truth_labels = {
13
- "CapitalRequirements": 0,
14
- "ConsumerProtection": 1,
15
- "RiskManagement": 0,
16
- "ReportingAndCompliance": 1,
17
- "CorporateGovernance": 0
18
- }
19
-
20
  # Function to classify text
21
  def classify_text(text):
22
  doc = nlp(text)
@@ -31,20 +19,16 @@ def evaluate_text(input_text):
31
 
32
  # Construct output dictionary with likelihood for each label
33
  output_dict = {
34
- "PredictedLabels": {label: score for label, score in predicted_labels.items() if score > threshold}
35
  }
36
 
37
- # Add likelihood for each ground truth label
38
- for label in ground_truth_labels:
39
- if label not in output_dict["PredictedLabels"]:
40
- output_dict["PredictedLabels"][label] = 0 # Set likelihood to 0 if label not present
41
-
42
  return output_dict
43
 
44
  # Gradio Interface
45
  iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text")
46
  iface.launch(share=True)
47
 
 
48
  # import gradio as gr
49
  # import spacy
50
  # from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score
 
5
  model_path = "./my_trained_model"
6
  nlp = spacy.load(model_path)
7
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  # Function to classify text
9
  def classify_text(text):
10
  doc = nlp(text)
 
19
 
20
  # Construct output dictionary with likelihood for each label
21
  output_dict = {
22
+ "PredictedLabels": {label: score for label, score in predicted_labels.items()}
23
  }
24
 
 
 
 
 
 
25
  return output_dict
26
 
27
  # Gradio Interface
28
  iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text")
29
  iface.launch(share=True)
30
 
31
+
32
  # import gradio as gr
33
  # import spacy
34
  # from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score