import jsonlines import spacy from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score # Load the trained spaCy model model_path = "./my_trained_model" nlp = spacy.load(model_path) # Load the golden evaluation data golden_eval_data = [] with jsonlines.open("data/goldenEval.jsonl") as reader: for record in reader: golden_eval_data.append(record) # New threshold for considering a label new_threshold = 0.21 # Change this to your desired threshold value # Predict labels for each record using your model with the new threshold predicted_labels = [] for record in golden_eval_data: text = record["text"] doc = nlp(text) # Apply the new threshold to the predicted labels filtered_labels = {label: score for label, score in doc.cats.items() if score > new_threshold} predicted_labels.append(filtered_labels) # Extract ground truth labels from the golden evaluation data true_labels = [record["accept"] for record in golden_eval_data] # Convert label format to match sklearn's classification report format true_labels_flat = [label[0] if label else "reject" for label in true_labels] predicted_labels_flat = [max(pred, key=pred.get) if pred else "reject" for pred in predicted_labels] # Calculate evaluation metrics accuracy = accuracy_score(true_labels_flat, predicted_labels_flat) precision = precision_score(true_labels_flat, predicted_labels_flat, average='weighted') recall = recall_score(true_labels_flat, predicted_labels_flat, average='weighted') f1 = f1_score(true_labels_flat, predicted_labels_flat, average='weighted') # Additional classification report report = classification_report(true_labels_flat, predicted_labels_flat) # Print or save the evaluation metrics print("Evaluation Metrics:") print(f"Accuracy: {accuracy}") print(f"Precision: {precision}") print(f"Recall: {recall}") print(f"F1-Score: {f1}") # Print or save the detailed classification report print("Detailed Classification Report:") print(report)