import gradio as gr import spacy from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score # Load the trained spaCy model model_path = "./my_trained_model" nlp = spacy.load(model_path) # Threshold for classification threshold = 0.21 # Function to classify text def classify_text(text): doc = nlp(text) predicted_labels = doc.cats return predicted_labels # Function to evaluate the predicted labels for the input text def evaluate_text(input_text): # Get the predicted labels and probabilities for the input text doc = nlp(input_text) predicted_labels = {label: doc.cats[label] for label in doc.cats} # Assuming you have ground truth labels for the input text, you would compare the predicted labels with the ground truth labels here. # For demonstration purposes, let's assume the ground truth labels are provided here. ground_truth_labels = { "CapitalRequirements": 0, "ConsumerProtection": 1, "RiskManagement": 0, "ReportingAndCompliance": 1, "CorporateGovernance": 0 } # Convert predicted and ground truth labels to lists predicted_labels_list = [doc.cats[label] for label in doc.cats] ground_truth_labels_list = [ground_truth_labels[label] for label in doc.cats] # Calculate evaluation metrics accuracy = accuracy_score(ground_truth_labels_list, predicted_labels_list) precision = precision_score(ground_truth_labels_list, predicted_labels_list, average='weighted') recall = recall_score(ground_truth_labels_list, predicted_labels_list, average='weighted') f1 = f1_score(ground_truth_labels_list, predicted_labels_list, average='weighted') # Additional classification report report = classification_report(ground_truth_labels_list, predicted_labels_list) # Construct output dictionary output_dict = { "PredictedLabels": predicted_labels, "EvaluationMetrics": { "Accuracy": accuracy, "Precision": precision, "Recall": recall, "F1-Score": f1, "ClassificationReport": report } } return output_dict # Convert predicted and ground truth labels to lists predicted_labels_list = [1 if predicted_labels[label] else 0 for label in predicted_labels] ground_truth_labels_list = [ground_truth_labels[label] for label in predicted_labels] # Calculate evaluation metrics accuracy = accuracy_score(ground_truth_labels_list, predicted_labels_list) precision = precision_score(ground_truth_labels_list, predicted_labels_list, average='weighted') recall = recall_score(ground_truth_labels_list, predicted_labels_list, average='weighted') f1 = f1_score(ground_truth_labels_list, predicted_labels_list, average='weighted') # Additional classification report report = classification_report(ground_truth_labels_list, predicted_labels_list) # Construct output dictionary output_dict = { "PredictedLabels": predicted_labels, "EvaluationMetrics": { "Accuracy": accuracy, "Precision": precision, "Recall": recall, "F1-Score": f1, "ClassificationReport": report } } return output_dict # Gradio Interface iface = gr.Interface(fn=evaluate_text, inputs="text", outputs="json", title="Text Evaluation-Manjinder", description="Enter your text") iface.launch(share=True)