import gradio as gr # Function to execute evaluate_model.py def evaluate_model_script(): import spacy import jsonlines from sklearn.metrics import classification_report, accuracy_score, f1_score, precision_score, recall_score # Load the trained spaCy model nlp = spacy.load("./my_trained_model") # Load the golden evaluation data golden_eval_data = [] with jsonlines.open("data/goldenEval.jsonl") as reader: for record in reader: golden_eval_data.append(record) # Predict labels for each record using your model predicted_labels = [] for record in golden_eval_data: text = record["text"] doc = nlp(text) predicted_labels.append(doc.cats) # Extract ground truth labels from the golden evaluation data true_labels = [record["accept"] for record in golden_eval_data] # Convert label format to match sklearn's classification report format true_labels_flat = [label[0] if label else "reject" for label in true_labels] predicted_labels_flat = [max(pred, key=pred.get) for pred in predicted_labels] # Calculate evaluation metrics accuracy = accuracy_score(true_labels_flat, predicted_labels_flat) precision = precision_score(true_labels_flat, predicted_labels_flat, average='weighted') recall = recall_score(true_labels_flat, predicted_labels_flat, average='weighted') f1 = f1_score(true_labels_flat, predicted_labels_flat, average='weighted') # Additional classification report report = classification_report(true_labels_flat, predicted_labels_flat) # Build the result dictionary result = { "accuracy": accuracy, "precision": precision, "recall": recall, "f1_score": f1, "detailed_classification_report": report } return result # Gradio Interface output = gr.outputs.Label(type="json", label="Evaluation Metrics") iface = gr.Interface(fn=evaluate_model_script, outputs=output, title="Evaluate Model Script") iface.launch()