import spacy import jsonlines # Load the trained model model_path = "./my_trained_model" nlp = spacy.load(model_path) # Load the unlabeled data unlabeled_data_file = "data/train.jsonl" # Open the JSONL file and classify each record classified_data = [] with jsonlines.open(unlabeled_data_file) as reader: for record in reader: text = record["text"] doc = nlp(text) predicted_labels = doc.cats classified_data.append({"text": text, "predicted_labels": predicted_labels}) # Optionally, you can save the classified data to a file or process it further output_file = "data/thirdStep_file.jsonl" with jsonlines.open(output_file, mode="w") as writer: writer.write_all(classified_data)