File size: 2,376 Bytes
00da6c1
 
 
 
 
39c254e
00da6c1
 
297ff18
00da6c1
 
052c4af
 
 
 
bde16a7
052c4af
00da6c1
052c4af
f69302e
bde16a7
00da6c1
052c4af
00da6c1
bde16a7
 
00da6c1
 
e20590d
00da6c1
541fdf8
00da6c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import StableCascadeCombinedPipeline
from huggingface_hub import hf_hub_download

device = 'cuda' #if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()

def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
    torch.cuda.empty_cache()
    image = pipe(prompt=Prompt, negative_prompt=negative_prompt, num_inference_steps=15, prior_num_inference_steps=steps, prior_guidance_scale=scale, width=width, height=height).images[0]
    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 2048, 768, step=128, label='Height'),
                               gr.Slider(512, 2048, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'), 
                               gr.Slider(5, maximum=100, value=50, step=5, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V1.9 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)