Manjushri's picture
Update app.py
3b1a716 verified
raw
history blame
3.56 kB
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
from huggingface_hub import hf_hub_download
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
if Model == "SD3":
torch.cuda.empty_cache()
image=SD3(
prompt=Prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=scale,
num_images_per_prompt=1,
num_inference_steps=steps).images[0]
if Model == "FXL":
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
return image
gr.Interface(fn=genie, inputs=[gr.Radio(["SD3", "FXL"], value='SD3', label='Choose Model'),
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1536, 1024, step=128, label='Height'),
gr.Slider(512, 1536, 1024, step=128, label='Width'),
gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'),
gr.Slider(10, maximum=56, value=28, step=2, label='Number of Prior Iterations'),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V2.3 with Stable Diffusion 3 - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True)