Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
import modin.pandas as pd | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline | |
device = 'cuda' #if torch.cuda.is_available() else 'cpu' | |
torch.cuda.max_memory_allocated(device=device) | |
torch.cuda.empty_cache() | |
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16) | |
prior.enable_xformers_memory_efficient_attention() | |
prior = prior.to(device) | |
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16) | |
decoder.enable_xformers_memory_efficient_attention() | |
decoder.enable_model_cpu_offload() | |
torch.cuda.empty_cache() | |
def genie (Prompt, negative_prompt, height, width, scale, steps, d_steps, seed): | |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) | |
torch.cuda.empty_cache() | |
prior_image=prior( | |
prompt=Prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
guidance_scale=scale, | |
num_images_per_prompt=1, | |
num_inference_steps=steps) | |
torch.cuda.empty_cache() | |
image=decoder( | |
image_embeddings=prior_image.image_embeddings.to(torch.float16), | |
prompt=Prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=0.0, | |
output_type="pil", | |
num_inference_steps=d_steps).images[0] | |
torch.cuda.empty_cache() | |
return image | |
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), | |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'), | |
gr.Slider(512, 1280, 1024, step=128, label='Height'), | |
gr.Slider(512, 1280, 1024, step=128, label='Width'), | |
gr.Slider(.5, maximum=10, value=3, step=.25, label='Guidance Scale'), | |
gr.Slider(10, maximum=40, value=20, step=5, label='Number of Prior Iterations'), | |
gr.Slider(5, maximum=20, value=10, step=5, label="Number of Decoder Iterations"), | |
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')], | |
outputs=gr.Image(label='Generated Image'), | |
title="Manju Dream Booth V2.1 with Stable-Cascade - GPU", | |
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", | |
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True) |