Manjushri commited on
Commit
0a31d24
·
verified ·
1 Parent(s): 6b3a940

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -9
app.py CHANGED
@@ -5,13 +5,17 @@ import modin.pandas as pd
5
  from PIL import Image
6
  #from diffusers import DiffusionPipeline
7
  from huggingface_hub import hf_hub_download
8
- from diffusers import StableCascadeCombinedPipeline
9
 
10
  device = 'cuda' #if torch.cuda.is_available() else 'cpu'
11
  torch.cuda.max_memory_allocated(device=device)
12
  torch.cuda.empty_cache()
13
- pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
14
- pipe.enable_xformers_memory_efficient_attention()
 
 
 
 
15
  #pipe = pipe.to(device)
16
  torch.cuda.empty_cache()
17
 
@@ -20,13 +24,21 @@ def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
20
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
21
  torch.cuda.empty_cache()
22
  pipe.enable_model_cpu_offload()
23
- image=pipe(prompt=Prompt,
24
- negative_prompt=negative_prompt,
25
- num_inference_steps=15,
26
- prior_num_inference_steps=steps,
27
- prior_guidance_scale=scale,
28
  width=width,
29
- height=height,).images[0]
 
 
 
 
 
 
 
 
 
 
30
  #int_image = pipe(prompt=Prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, width=width, height=height, output_type="latent").images #
31
  #torch.cuda.empty_cache()
32
  #image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
 
5
  from PIL import Image
6
  #from diffusers import DiffusionPipeline
7
  from huggingface_hub import hf_hub_download
8
+ from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
9
 
10
  device = 'cuda' #if torch.cuda.is_available() else 'cpu'
11
  torch.cuda.max_memory_allocated(device=device)
12
  torch.cuda.empty_cache()
13
+ prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
14
+ prior.enable_model_cpu_offload()
15
+ decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
16
+ decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
17
+
18
+ #pipe.enable_xformers_memory_efficient_attention()
19
  #pipe = pipe.to(device)
20
  torch.cuda.empty_cache()
21
 
 
24
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
25
  torch.cuda.empty_cache()
26
  pipe.enable_model_cpu_offload()
27
+ prior_image=prior(
28
+ prompt=Prompt,
29
+ height=height,
 
 
30
  width=width,
31
+ negative_prompt=negative_prompt,
32
+ guidance_scale=scale,
33
+ num_images_per_prompt=1,
34
+ num_inference_steps=steps)
35
+ image=decoder(
36
+ image_embeddings=prior_output.image_embeddings.to(torch.float16),
37
+ prompt=Prompt,
38
+ negative_prompt=negative_prompt,
39
+ guidance_scale=0.0,
40
+ output_type="pil",
41
+ num_inference_steps=10).images[0]
42
  #int_image = pipe(prompt=Prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, width=width, height=height, output_type="latent").images #
43
  #torch.cuda.empty_cache()
44
  #image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]