Manjushri commited on
Commit
548c5ac
·
verified ·
1 Parent(s): d1b4fe9

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -107
app.py DELETED
@@ -1,107 +0,0 @@
1
- import gradio as gr
2
- import torch
3
- import os
4
- from glob import glob
5
- from pathlib import Path
6
- from typing import Optional
7
-
8
- from diffusers import StableVideoDiffusionPipeline
9
- from diffusers.utils import load_image, export_to_video
10
- from PIL import Image
11
-
12
- import uuid
13
- import random
14
- from huggingface_hub import hf_hub_download
15
-
16
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
17
- torch.cuda.max_memory_allocated(device=device)
18
- torch.cuda.empty_cache()
19
- pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" )
20
- pipe.to("cuda")
21
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
22
- pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
23
- torch.set_float32_matmul_precision('high')
24
- #pipe.enable_xformers_memory_efficient_attention()
25
- torch.cuda.empty_cache()
26
- max_64_bit_int = 2**63 - 1
27
-
28
- def sample(
29
- image: Image,
30
- seed: Optional[int] = 42,
31
- randomize_seed: bool = True,
32
- motion_bucket_id: int = 127,
33
- fps_id: int = 6,
34
- version: str = "svd_xt_1-1",
35
- cond_aug: float = 0.02,
36
- decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
37
- device: str = "cuda",
38
- output_folder: str = "outputs",
39
- ):
40
- if image.mode == "RGBA":
41
- image = image.convert("RGB")
42
-
43
- if(randomize_seed):
44
- seed = random.randint(0, max_64_bit_int)
45
- generator = torch.manual_seed(seed)
46
-
47
- os.makedirs(output_folder, exist_ok=True)
48
- base_count = len(glob(os.path.join(output_folder, "*.mp4")))
49
- video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
50
-
51
- frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=.9, num_frames=25).frames[0]
52
- export_to_video(frames, video_path, fps=fps_id)
53
- torch.manual_seed(seed)
54
- torch.cuda.empty_cache()
55
- return video_path, seed
56
-
57
- def resize_image(image, output_size=(1024, 576)):
58
- # Calculate aspect ratios
59
- target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
60
- image_aspect = image.width / image.height # Aspect ratio of the original image
61
-
62
- # Resize then crop if the original image is larger
63
- if image_aspect > target_aspect:
64
- # Resize the image to match the target height, maintaining aspect ratio
65
- new_height = output_size[1]
66
- new_width = int(new_height * image_aspect)
67
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
68
- # Calculate coordinates for cropping
69
- left = (new_width - output_size[0]) / 2
70
- top = 0
71
- right = (new_width + output_size[0]) / 2
72
- bottom = output_size[1]
73
- else:
74
- # Resize the image to match the target width, maintaining aspect ratio
75
- new_width = output_size[0]
76
- new_height = int(new_width / image_aspect)
77
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
78
- # Calculate coordinates for cropping
79
- left = 0
80
- top = (new_height - output_size[1]) / 2
81
- right = output_size[0]
82
- bottom = (new_height + output_size[1]) / 2
83
-
84
- torch.cuda.empty_cache()
85
- cropped_image = resized_image.crop((left, top, right, bottom))
86
- return cropped_image
87
-
88
- with gr.Blocks() as demo:
89
-
90
- with gr.Row():
91
- with gr.Column():
92
- image = gr.Image(label="Upload your image", type="pil")
93
- generate_btn = gr.Button("Generate")
94
- video = gr.Video()
95
- with gr.Accordion("Advanced options", open=False):
96
- seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
- motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=60, minimum=1, maximum=255)
99
- fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
100
-
101
- image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
102
- generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
103
-
104
-
105
- if __name__ == "__main__":
106
- demo.queue(max_size=20, api_open=False)
107
- demo.launch(show_api=False)