Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ torch.cuda.empty_cache()
|
|
13 |
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
|
14 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
15 |
if Model == "SD3":
|
16 |
-
torch.cuda.max_memory_allocated(device=device)
|
17 |
torch.cuda.empty_cache()
|
18 |
SD3 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16).to(device)
|
19 |
torch.cuda.empty_cache()
|
@@ -28,13 +28,13 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
|
|
28 |
if Model == "FXL":
|
29 |
|
30 |
torch.cuda.empty_cache()
|
31 |
-
torch.cuda.max_memory_allocated(device=device)
|
32 |
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16)
|
33 |
pipe.enable_xformers_memory_efficient_attention()
|
34 |
pipe = pipe.to(device)
|
35 |
torch.cuda.empty_cache()
|
36 |
|
37 |
-
torch.cuda.max_memory_allocated(device=device)
|
38 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
39 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
40 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
13 |
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
|
14 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
15 |
if Model == "SD3":
|
16 |
+
#torch.cuda.max_memory_allocated(device=device)
|
17 |
torch.cuda.empty_cache()
|
18 |
SD3 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16).to(device)
|
19 |
torch.cuda.empty_cache()
|
|
|
28 |
if Model == "FXL":
|
29 |
|
30 |
torch.cuda.empty_cache()
|
31 |
+
#torch.cuda.max_memory_allocated(device=device)
|
32 |
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16)
|
33 |
pipe.enable_xformers_memory_efficient_attention()
|
34 |
pipe = pipe.to(device)
|
35 |
torch.cuda.empty_cache()
|
36 |
|
37 |
+
#torch.cuda.max_memory_allocated(device=device)
|
38 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
39 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
40 |
pipe.enable_xformers_memory_efficient_attention()
|