Manjushri commited on
Commit
f5ee026
1 Parent(s): 9f41b56

Update app.py

Browse files

Retesting Cascade

Files changed (1) hide show
  1. app.py +19 -11
app.py CHANGED
@@ -3,28 +3,36 @@ import torch
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
- from diffusers import DiffusionPipeline
7
  from huggingface_hub import hf_hub_download
8
 
 
 
 
9
  device = 'cuda' #if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
  torch.cuda.empty_cache()
12
- pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16, safety_checker=None)
 
13
  pipe.enable_xformers_memory_efficient_attention()
14
  pipe = pipe.to(device)
15
  torch.cuda.empty_cache()
16
 
17
- refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
18
- refiner.enable_xformers_memory_efficient_attention()
19
- refiner = refiner.to(device)
20
- torch.cuda.empty_cache()
21
-
22
  def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
23
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
24
  torch.cuda.empty_cache()
25
- int_image = pipe(prompt=Prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, width=width, height=height, output_type="latent").images #
26
- torch.cuda.empty_cache()
27
- image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
 
 
 
 
 
 
 
 
28
  torch.cuda.empty_cache()
29
  return image
30
 
@@ -32,7 +40,7 @@ gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generat
32
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
33
  gr.Slider(512, 1408, 1024, step=128, label='Height'),
34
  gr.Slider(512, 1408, 1024, step=128, label='Width'),
35
- gr.Slider(7.5, maximum=15, value=10, step=.25, label='Guidance Scale'),
36
  gr.Slider(10, maximum=50, value=25, step=5, label='Number of Iterations'),
37
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
38
  outputs=gr.Image(label='Generated Image'),
 
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
+ #from diffusers import DiffusionPipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
+ from diffusers import StableCascadeCombinedPipeline
10
+
11
+
12
  device = 'cuda' #if torch.cuda.is_available() else 'cpu'
13
  torch.cuda.max_memory_allocated(device=device)
14
  torch.cuda.empty_cache()
15
+ pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
16
+
17
  pipe.enable_xformers_memory_efficient_attention()
18
  pipe = pipe.to(device)
19
  torch.cuda.empty_cache()
20
 
21
+
 
 
 
 
22
  def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
23
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
24
  torch.cuda.empty_cache()
25
+ image=pipe(prompt=Prompt,
26
+ negative_prompt="",
27
+ num_inference_steps=20,
28
+ prior_num_inference_steps=steps,
29
+ prior_guidance_scale=scale,
30
+ width=width,
31
+ height=height,).images[0]
32
+
33
+ #int_image = pipe(prompt=Prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, width=width, height=height, output_type="latent").images #
34
+ #torch.cuda.empty_cache()
35
+ #image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
36
  torch.cuda.empty_cache()
37
  return image
38
 
 
40
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
41
  gr.Slider(512, 1408, 1024, step=128, label='Height'),
42
  gr.Slider(512, 1408, 1024, step=128, label='Width'),
43
+ gr.Slider(.5, maximum=15, value=3, step=.25, label='Guidance Scale'),
44
  gr.Slider(10, maximum=50, value=25, step=5, label='Number of Iterations'),
45
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
46
  outputs=gr.Image(label='Generated Image'),