Spaces:
Running
Running
import gradio as gr | |
import torch | |
from torchvision.transforms import ToPILImage, ToTensor | |
from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionUpscalePipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Define the models | |
model_2x = "stabilityai/sd-x2-latent-upscaler" | |
model_4x = "stabilityai/stable-diffusion-x4-upscaler" | |
# Load the models | |
sd_2_0_2x = StableDiffusionLatentUpscalePipelin.from_pretrained(model_2x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x) | |
sd_2_1_4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x) | |
# Define the input and output components for the Gradio interface | |
input_image = gr.inputs.Image(type="filepath") | |
output_image = gr.outputs.Image(type="filepath") | |
# Define the function that will be called when the interface is used | |
def upscale_image(model, image): | |
# Convert the image to a PyTorch tensor | |
image_tensor = ToTensor()(image) | |
# Upscale the image using the selected model | |
if model == "SD 2.0 2x Latent Upscaler": | |
upscaled_tensor = sd_2_0_2x(image_tensor) | |
else: | |
upscaled_tensor = sd_2_1_4x(image_tensor) | |
# Convert the upscaled tensor back to a PIL image | |
upscaled_image = ToPILImage()(upscaled_tensor) | |
# Return the upscaled image | |
return upscaled_image | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=upscale_image, | |
inputs=[gr.Radio(["SD 2.0 2x Latent Upscaler", "SD 2.1 4x Upscaler"]), input_image], | |
outputs=output_image, | |
title="Image Upscaler", | |
description="Upscale an image using either the SD 2.0 2x Latent Upscaler or the SD 2.1 4x Upscaler." | |
) | |
# Launch the interface | |
iface.launch(debug=True) | |