import gradio as gr import torch from torchvision.transforms import ToPILImage, ToTensor from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionUpscalePipeline device = "cuda" if torch.cuda.is_available() else "cpu" # Define the models model_2x = "stabilityai/sd-x2-latent-upscaler" model_4x = "stabilityai/stable-diffusion-x4-upscaler" # Load the models sd_2_0_2x = StableDiffusionLatentUpscalePipelin.from_pretrained(model_2x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x) sd_2_1_4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x) # Define the input and output components for the Gradio interface input_image = gr.inputs.Image(type="filepath") output_image = gr.outputs.Image(type="filepath") # Define the function that will be called when the interface is used def upscale_image(model, image): # Convert the image to a PyTorch tensor image_tensor = ToTensor()(image) # Upscale the image using the selected model if model == "SD 2.0 2x Latent Upscaler": upscaled_tensor = sd_2_0_2x(image_tensor) else: upscaled_tensor = sd_2_1_4x(image_tensor) # Convert the upscaled tensor back to a PIL image upscaled_image = ToPILImage()(upscaled_tensor) # Return the upscaled image return upscaled_image # Define the Gradio interface iface = gr.Interface( fn=upscale_image, inputs=[gr.Radio(["SD 2.0 2x Latent Upscaler", "SD 2.1 4x Upscaler"]), input_image], outputs=output_image, title="Image Upscaler", description="Upscale an image using either the SD 2.0 2x Latent Upscaler or the SD 2.1 4x Upscaler." ) # Launch the interface iface.launch(debug=True)