import gradio as gr
import modin.pandas as pd
import torch
from PIL import Image
import imageio
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
adapter = T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-sketch-sdxl-1.0")
#scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id,
adapter=adapter,)
pipe = pipe.to(device)
def resize(value,img):
img = Image.open(img)
img = img.resize((value,value))
return img
def infer(source_img, prompt, negative_prompt, guide, steps, seed):
generator = torch.Generator(device).manual_seed(seed)
imageio.imwrite("data.png", source_img)
src = resize(768, 'data.png')
image = pipe(prompt, negative_prompt=negative_prompt, image=src, adapter_conditioning_scale=.8,
adapter_conditioning_factor=.8, guidance_scale=guide, num_inference_steps=steps).images[0]
return image
gr.Interface(fn=infer, inputs=[gr.Image(type='numpy', source='canvas'),
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
gr.Textbox(label='What you Do Not want the AI to generate.'),
gr.Slider(5, 15, value = 10, label = 'Guidance Scale'),
gr.Slider(25, 50, value = 25, step = 25, label = 'Number of Iterations'),
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True)],
outputs='image',
title = "Stable Diffusion XL 1.0 Doodle to Image CPU",
description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0
Sketch an Image then enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic",
article = "Code Monkey: Manjushri").queue(max_size=5).launch()