Spaces:
Running
Running
File size: 3,410 Bytes
9986603 e7e8fe0 acfacdd 200d2fc 9986603 d6f2c7d 02018b9 d6f2c7d e4d9c14 d6f2c7d 72c3831 d6f2c7d 0485290 d6f2c7d e4d9c14 f3ed143 d6e0495 9e62359 d6e0495 750d01b 571b468 e8b5fd4 02018b9 9e62359 ec02565 b4932e6 54f5f58 571b468 2231b16 7597a8f 9b9a598 9da89fa 2231b16 8bbabe2 b4932e6 02018b9 8bbabe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import torch
import modin.pandas as pd
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
#PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
torch.cuda.empty_cache()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner.enable_sequential_cpu_offload()
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
#refiner = refiner.to(device)
#refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
def genie (prompt, steps, seed):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
int_image = pipe(prompt=prompt, generator=generator, num_inference_steps=steps, guidance_scale=0.0).images[0] 8
#image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, denoising_start=high_noise_frac).images[0]
return int_image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
#gr.Textbox(label='What you Do Not want the AI to generate.'),
#gr.Slider(512, 1024, 768, step=128, label='Height'),
#gr.Slider(512, 1024, 768, step=128, label='Width'),
#gr.Slider(1, 15, 10, label='Guidance Scale'),
gr.Slider(1, maximum=5, value=2, step=1, label='Number of Iterations'),
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True),
#gr.Textbox(label='Embedded Prompt'),
#gr.Textbox(label='Embedded Negative Prompt'),
#gr.Slider(minimum=.7, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %')
],
outputs='image',
title="Stable Diffusion Turbo CPU or GPU",
description="SDXL Turbo CPU or GPU. Currently running on CPU. <br><br><b>WARNING:</b> Extremely Slow. 65s/Iteration. Expect 25-50mins an image for 25-50 iterations respectively. This model is capable of producing NSFW (Softcore) images.",
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these W7allets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) |