import gradio as gr import torch import modin.pandas as pd from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000} torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") refiner.enable_xformers_memory_efficient_attention() refiner.enable_sequential_cpu_offload() else: pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True) pipe = pipe.to(device) refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True) refiner = refiner.to(device) def genie (prompt, negative_prompt, scale, steps, seed): generator = torch.Generator(device=device).manual_seed(seed) int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator, width=768, height=768, output_type="latent").images image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0] return image gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(1, 15, 10, label='Guidance Scale'), gr.Slider(25, maximum=50, value=25, step=1, label='Number of Iterations'), gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True)], outputs='image', title="Stable Diffusion XL 1.0 CPU", description="SDXL 1.0 CPU.

WARNING: Extremely Slow. 65s/Iteration. Expect 25-50mins an image for 25-50 iterations respectively.", article = "Code Monkey: Manjushri").launch(debug=True, max_threads=80)