import gradio as gr import torch import numpy as np from PIL import Image import re from datasets import load_dataset from diffusers import DiffusionPipeline, EulerDiscreteScheduler device = "cuda" if torch.cuda.is_available() else "cpu" scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler", prediction_type="v_prediction") pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=scheduler) pipe = pipe.to(device) def genie (prompt, scale, steps, seed): generator = torch.Generator(device=device).manual_seed(seed) images = pipe(prompt, width=768, height=512, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator).images return images[0] gr.Interface(fn=genie, inputs=['text', gr.Slider(1, 20, 10), gr.Slider(10, maximum=20), gr.Slider(maximum=9999999999999, randomize=True)], outputs='image', article = "Code Monkey: Manjushri").launch(debug=True)